Abstract:
A valve actuation system is disclosed for use with an internal combustion engine. The valve actuation system may have a rocker shaft, a rocker arm pivotally mounted on the rocker shaft, at least one cam follower and a pushrod connecting the at least one cam follower to the rocker arm. The valve actuation system may also have a plurality of gas exchange valves, and a bridge connecting the rocker arm to the valves. The valve actuation system may further have at least one spring disposed around each of the valves and configured to bias each of the valves toward closed positions, and a rotocoil configured to rotatably connect the at least one spring to each of the valves. The rotocoil may have an internal chamfer at a bridge end with an angle of about 26-28°. The at least one spring may have an assembled load of about 750-850 N.
Abstract:
A valve for use in an internal combustion engine is disclosed. The valve includes a stem friction welded to a head portion. The head portion is cast from a single crystal metal using a casting process that creates little or no grain boundaries. The single crystal metal can be a nickel based superalloys such as CMSX-4, CMSX 3, Rene N5, and Rene N6. By having little or no grain boundaries, defects that occur in other types of casting material, such as large numbers of grain boundaries can be minimized. This allows the head portion and particularly the combustion face to withstand an operating temperature in the combustion chamber in excess of 850° C.
Abstract:
A valve for use in an internal combustion engine is disclosed. The valve includes a stem friction welded to a head portion. The head portion is cast from a single crystal metal using a casting process that creates little or no grain boundaries. The single crystal metal can be a nickel based superalloys such as CMSX-4, CMSX 3, Rene N5, and Rene N6. By having little or no grain boundaries, defects that occur in other types of casting material, such as large numbers of grain boundaries can be minimized. This allows the head portion and particularly the combustion face to withstand an operating temperature in the combustion chamber in excess of 850° C.
Abstract:
A valve (1), in particular for a combustion engine, comprising:—a body (2) in which the following are provided: a housing (8) in which at least one bearing is arranged, and a conduit (3) designed to be traversed by a fluid, and—a shutter (5) mounted pivoting in the body (2) by a pin (7) received with radial clearance in the bearing, the shutter (5) pivoting between:—an open position, and—a closed position in which it comes into contact with the body (2) via a first contact area of the shutter located on a first side of the pin (7) and via a second contact area of the shutter located on a second side of the pin (7) opposite said first side, the switching of the shutter (5) from the open position to the closed position being accompanied by a radial movement of the pin (7) in the bearing.
Abstract:
A new architecture of a combustion chamber for a diesel engine allows arranging the engine valves according to an axis inclined with respect to the cylinder axis by an angle greater than 8°, without reducing the swirl ratio obtained at the end of the compression stage.
Abstract:
Disclosed is an engine that comprises an engine block, and the engine block comprises a cylinder. The engine further comprises a cylinder head mounted to the engine block, and the cylinder head comprises an intake valve seat and a shroud. Further yet, the engine comprises a combustion chamber formed at least partially by the cylinder and the cylinder head. The intake valve is configured to travel between a fully closed position seated against the intake valve seat and an opened position displaced from the intake valve seat, thus allowing intake flow through the intake valve seat into the combustion chamber. The shroud only partially surrounds a periphery of the valve and extends along at least a portion of the travel of the intake valve so as to restrict intake flow along only a portion of the intake valve.
Abstract:
Disclosed is a method—for producing an engine valve (V) filled with metallic sodium (Na) within by means of: forming a stem section (S), which has a hollow section (H), at an intended size by successively drawing the stem section (S) using dies (D1, D2, Dx, Dx+1, Dn) in a manner so as to causing the size of the outer diameter and the inner diameter of the stem section (S) to contact in a stepwise fashion; and inserting metallic sodium (Na) into the hollow section (H) of the stem section (S)—wherein after drawing the stem section (S) until the inner diameter of the hollow section (H) of the stem section (S) has become a prescribed size (steps S11-S15) and then inserting the block-shaped solid metallic sodium (Na) into the hollow section (H) of the stem section (S) (step S16), the stem section (S) is further drawn (steps S17 and S18).
Abstract:
Disclosed is a valve seat lubrication oil coating device. More specifically, an oil pan is filled with lubrication oil and configured so that a valve seat partially soaks therein. An oil tank is equipped with a hydraulic pump, and an oil pan oil supplier supplies oil to the oil pan via the hydraulic pump from the oil tank. Additionally, a coating oil supplier coats an outer circumferential surface of a portion of the valve seat, which is not being soaked in the oil, with the oil from the oil tank.
Abstract:
A heat transferring engine valve for an internal combustion engine to increase the combustion efficiency and fuel economy of the engine. The heat transferring valve includes a valve head and a heat transferring member situated at the combustion surface of the valve head and extending toward the combustion chamber. The heat transferring member absorbs heat of combustion during the power stroke of an engine cycle and releases the heat into the combustion chamber during the compression stroke of a succeeding engine cycle, thereby raising the temperature of fuel at the start of combustion. A method for increasing the efficiency of combustion in an internal combustion engine by incorporating at least one heat transferring valve into the engine.
Abstract:
The present disclosure relates to an engine valve device including: engine valves; valve guides configured to guide a reciprocating motion of the engine valves; and stem seals fitting on one end of each of the valve guides and circumferentially covering the engine valves, in which the engine valves have micro-machined oil ports on the surfaces surrounded by the valve guides or the stem seals.