Abstract:
A combustion process for reducing nitrogen oxides in combustors is proposed wherein combustion takes place successively forming an incomplete combustion zone, a reducing combustion zone, and a complete combustion zone, respectively corresponding to primary burners, secondary burners and air ports or after-burners, successively arranged in the direction of gas stream in a furnace. According to the present invention, it is possible to reduce nitrogen oxides by improving a manner of combustion without providing any denitrating apparatuses for exhaust gas.
Abstract:
Reasons of ecology, health and prevention of corrosion require firing methods and furnaces with which the contents of soot and uncombustible gases such as carbon monoxide, hydrogen, hydrocarbons as well as nitrogen oxides and sulfur trioxides do not excess certain levels. This is obtained by a firing method in which a fuel is decomposed with deficient amounts of primary combustion air to combustible gases. Such gases are combusted by the admixture of secondary and tertiary combustion air amounts whereby a flame is obtained which is extended in space and time and, thus, the temperature of which does not rise above moderate values such as 1400.degree. centigrade. Prior to being exhausted, the combustion gases are thoroughly mixed so as to obtain perfect combustion of possibly subsisting combustible substances. Exhausting takes place with heat withdrawal so that cool and pure combustion gases enter the ambiency. The furnace suitable to carry out such method is distinguished by ceramic walls as well as a combustor at the inlet extremity of the furnace. At least one heat withdrawal means is provided downstream the combustor.
Abstract:
Carbonaceous fuel is thermally combusted with an amount of air substantially less than that needed for complete combustion to carbon dioxide and water of all the combustible components in the fuel to produce a gaseous effluent containing a substantial proportion of carbon monoxide but little or no nitrogen oxides. Additional carbonaceous fuel is mixed with air, and at least a portion of this mixture is passed into the presence of a solid oxidation catalyst for adiabatic combustion at a temperature above the instantaneous auto-ignition temperature of the mixture but below nitrogen-oxide-forming temperatures. The first gaseous effluent and the gases exiting from the catalyst are mixed and thermal combustion takes place in this mixture to produce a completely combusted final combustion effluent which is low in atmospheric pollutants, particularly nitrogen oxides.
Abstract:
A damper for a furnace, the damper including an air port damper body engaged to an air port opening of a furnace; and at least one velocity plate in hinged engagement to the air port damper body so that an air controlling end surface of the at least one velocity plate is substantially aligned to a wall of the furnace at the air port opening when the at least one velocity plate is in a fully opened position.
Abstract:
The pre-mix burner assembly includes a jet pump comprising a suction chamber, a flue gas inlet, and a combustion air tube with a combustion air nozzle. The combustion air inlet includes a combustion air tube with a tapered nozzle, and it is connected to a combustion air fan. The flue gas inlet is connected to the suction chamber and the combustion air fan. The suction chamber surrounds the combustion air tube, and it has a jet pump nozzle with a discharge. The assembly includes a fuel gas inlet connected to the combustion air tube. The combustion air and fuel gas mixture exits the combustion air nozzle creating a negative pressure in the suction chamber and drawing flue gas into the suction chamber. The assembly includes a mixing tube positioned downstream of the jet pump discharge, and a burner block connected to an outlet of the mixing tube.
Abstract:
The present invention relates generally to the field of emission control equipment for boilers, heaters, kilns, or other flue gas-, or combustion gas-, generating devices (e.g., those located at power plants, processing plants, etc.) and, in particular to a new and useful method and apparatus for reducing or preventing the poisoning and/or contamination of an SCR catalyst. In another embodiment, the method and apparatus of the present invention is designed to protect the SCR catalyst. In still another embodiment, the present invention relates to a method and apparatus for increasing the service life and/or catalytic activity of an SCR catalyst while simultaneously controlling various emissions.
Abstract:
Disclosed herein is a method of controlling the operation of an oxy-fired boiler; the method comprising combusting a fuel in a boiler; producing a heat absorption pattern in the boiler; discharging flue gases from the boiler; recycling a portion of the flue gases to the boiler; combining a first oxidant stream with the recycled flue gases to form a combined stream; splitting the combined stream into several fractions; and introducing each fraction of the combined stream to the boiler at different points of entry to the boiler.
Abstract:
A method of controlling the operation of an oxy-fired boiler includes combusting a fuel that comprises oil heavy residues in a boiler, the oil heavy residues including hydrocarbon molecules having a number average molecular weight from approximately 200 to approximately 3000 grams per mole, discharging flue gas from the boiler, recycling a portion of the flue gas to the boiler, combining a first oxidant stream with the recycled flue gas to form a combined stream, splitting the combined stream into a plurality of independent split streams, introducing each independent split stream at a different elevation of the boiler, and controlling independently a parameter of each of the independent split streams to adjust the heat release at each respective elevation of the boiler to vary the heat release profile of the boiler by adding a second oxidant stream to each respective independent split stream to form respective independent oxygen enriched split streams.
Abstract:
The present disclosure provides a burner for a reduction reactor, the reduction reactor has a reaction space formed therein, wherein each burner has a fuel feeding hole and multiple oxygen feeding holes formed therein, wherein each burner has an elongate combustion space formed at one end of a head portion thereof, the combustion space fluid-communicating with the reaction space of the reactor, wherein the elongate combustion space has a length such that oxygen supplied from the oxygen feeding holes thereto is completely consumed via oxidation or combustion with fuels supplied from the fuel feeding hole thereto only in the elongate combustion space upon igniting the burner.
Abstract:
Devices, methods, and systems for utilizing a burner with a combustion air driven jet pump are described herein. One burner apparatus includes a jet pump located inside a burner housing, the jet pump having a combustion air inlet that receives combustion air, a chamber to receive the combustion air from the combustion air inlet, and a tapered portion of the chamber that tapers to an outlet having a smaller diameter than the diameter of the inlet.