摘要:
A fuel production system and a fuel production method are provided which can efficiently perform adjusting of a synthesis gas composition by hydrogen supply, while suppressing the generated amount of carbon dioxide by a system overall. A fuel production system includes: a gasification furnace which gasifies a biomass raw material to generate a synthesis gas containing hydrogen and carbon monoxide; a liquid fuel production device which produces a liquid fuel from the synthesis gas generated by the gasification furnace; a hydrogen supply pump which supplies hydrogen to a raw material supply area or a synthesis gas discharge area; a byproduct sensor which detects a byproduct amount generated inside the gasification furnace; and a controller which switches a hydrogen supply location by the hydrogen supply pump between the raw material supply area and synthesis gas discharge area, based on the byproduct amount detected by the byproduct sensor.
摘要:
Methods and systems related to augmenting syngas production using electrolysis are disclosed. A disclosed method includes harvesting a volume of carbon monoxide from a syngas production system operating on a volume of natural gas, supplying the volume of carbon monoxide to a cathode area of an electrolyzer, and generating, using the volume of carbon monoxide and the electrolyzer, a volume of generated chemicals. The volume of generated chemicals is at least one of: a volume of hydrocarbons, a volume of olefins, a volume of organic acids, a volume of alcohols, and a volume of N-rich organic compounds.
摘要:
An ASG system for polygeneration with CC includes a devolatilizer that pyrolyzes solid fuel to produce char and gases. A burner adds exothermic heat by high-pressure sub-stoichiometric combustion, a mixing pot causes turbulent flow of the gases to heat received solid fuel, and a riser micronizes resulting friable char. A devolatilizer cyclone separates the micronized char by weight providing micronized char, steam and gases to a gasifier feed and oversized char to the mixing pot. An indirect fluid bed gasifier combustion loop includes a gasifier coupled to the gasifier feed, a steam input to provide oxygen for gasification and to facilitate sand-char separation, and an output for providing syngas. A burner provides POC to a mixing pot which provides hot sand with POC to a POC cyclone via a riser, where the POC cyclone separates sand and POC by weight and provides POC and sand for steam-carbon reaction.
摘要:
A method producing synthetic hydrocarbons includes producing synthesis gas. An initial step, carbon or a mixture of carbon and hydrogen is brought into contact with water at a temperature of 800-1700° C. The synthesis gas is converted into synthetic functionalised and/or non-functionalised hydrocarbons by means of a Fischer Tropsch process wherein it is brought into contact with a suitable catalyst, and wherein water in which a portion of the synthetic hydrocarbons is dissolved results as a by-product. At least a portion of the water that is produced as a by-product is supplied to the initial step. The hydrocarbons that are dissolved in the water decompose into particle-like carbon and hydrogen at the high temperature. The carbon is converted into CO in the presence of water and at a high temperature and forms a portion of the synthesis gas that is produced. In this way, a costly process for cleaning half of the water that is produced as a by-product is avoided.
摘要:
An optical network comprising an optical network element comprising a first optical transmitter, a first controller, an optical receiver, a second optical transmitter, a second controller and optical receiver apparatus. Said first controller is arranged to control said first optical transmitter to generate and transmit a first optical signal in response no second optical signal being detected. Said first controller is arranged to iteratively generate and transmit said first optical signal at different wavelengths of a plurality of wavelengths until said second optical signal is detected, and is further arranged to subsequently maintain generation and transmission of said first optical signal at said wavelength at which said second optical signal is detected. Said second controller is arranged to control said second optical transmitter to generate and transmit said second optical signal following detection of said first optical signal by said optical receiver apparatus.
摘要:
A method and system for converting intermittent renewable energy and renewable carbonaceous feedstock to non-intermittent renewable electrical and thermal energy, storing it as fuels and chemicals and using it to capture and re-use or dispose of CO2 emissions. The system in a preferred embodiment is realized through the generation of non-intermittent renewable electricity utilizing intermittent renewable energy sources along with gaseous fuel from renewable carbonaceous feedstock, producing oxygen and hydrogen from non-intermittent renewable electricity and utilizing the oxygen and hydrogen as required for gasification of renewable carbonaceous feedstock to produce gaseous fuel stream and gaseous intermediate stream, utilizing the gaseous intermediate stream to produce renewable fuels and renewable chemicals, and utilizing oxygen for oxy-rich combustion for concentrating CO2 emissions for easy processing, re-use and disposal.
摘要:
A method for the gasification of carbon to yield products including carbon monoxide, hydrogen, and methane. The method comprises irradiating a source of carbon with radiation having a frequency between 300 GHz and 300 MHz and contacting the source of carbon with a reactant such as water, carbon dioxide, hydrogen, and a nitrogen oxide. The choice of reactant dictates the resultant product.
摘要:
An optical network (10) comprising an optical network element (12) comprising a first optical transmitter (14), a first controller (16), an optical receiver (18), a second optical transmitter (22), a second controller (24) and optical receiver apparatus (26). Said first controller is arranged to control said first optical transmitter to generate and transmit a first optical signal in response no second optical signal being detected. Said first controller is arranged to iteratively generate and transmit said first optical signal at different wavelengths of a plurality of wavelengths until said second optical signal is detected, and is further arranged to subsequently maintain generation and transmission of said first optical signal at said wavelength at which said second optical signal is detected. Said second controller is arranged to control said second optical transmitter to generate and transmit said second optical signal following detection of said first optical signal by said optical receiver apparatus.
摘要:
The present invention relates to processes and apparatuses for hydromethanating a vanadium-containing carbonaceous feedstock while recovering at least a portion of the vanadium content originally present in the carbonaceous feedstock.
摘要:
A method and apparatus for converting carbonaceous material to a stream of methane and carbon monoxide rich gas by heating the carbonaceous material in a fluidized bed reactor using hydrogen, as fluidizing medium, and using steam, under reducing conditions at a temperature and pressure sufficient to generate a stream of methane and carbon monoxide rich gas but at a temperature low enough and/or at a pressure high enough to enable the carbonaceous material to be fluidized by the hydrogen. In particular embodiments, the carbonaceous material is fed as a slurry feed, along with hydrogen, to a kiln type reactor before being fed to the fluidized bed reactor. Apparatus is provided comprising a kiln type reactor, a slurry pump connected to an input of the kiln type reactor, means for connecting a source of hydrogen to an input of the kiln type reactor; a fluidized bed reactor connected to receive output of the kiln type reactor for processing at a fluidizing zone, and a source of steam and a source of hydrogen connected to the fluidized bed reactor below the fluidizing zone. Optionally, a grinder can be provided in the kiln type reactor.