Abstract:
A method and sensor for detecting strain using shape memory alloys is disclosed. The sensor comprises a substrate material, a flexible diaphragm provided on the substrate material and a thin film SMA material deposited on the flexible diaphragm. The thin film SMA material is capable of undergoing a phase transformation in response to a physical stimulus being applied thereto. During such a phase transformation, a change occurs in the electrical resistance of the thin film SMA material. By measuring the value of the electrical resistance of the thin film SMA material immediately before and after the thin film SMA material undergoes a phase transformation, the difference in the value of the electrical resistance can be determined and utilized to determine the magnitude of the physical stimulus that was applied to the thin film SMA material causing it to undergo a phase transformation.
Abstract:
A method for sensing mechanical quantities such as force, stress, strain, pressure and acceleration is disclosed. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics. The electrodes are made of conductors such as metals with dissimilar electro negativities. Significantly enhanced sensitivities, up to three orders of magnitude higher than that of comparable commercial sensors, are obtained. The materials are substantially less expensive than commercially used materials for mechanical sensors. An apparatus for sensing such mechanical quantities using materials such as doped 1,4 cis-polyisopropene and nation. The 1,4 cis-polyisopropene may be doped with lithium perchlorate or iodine. The output voltage signal increases with an increase of the sensing area for a given stress. The device can be used as an intruder alarm, among other applications.
Abstract:
A surface micro-machined sensor uses a pedestal in a cavity to support a flexible structure and reduce the span of the flexible structure. The reduced span per sense area allows larger sensor areas without permitting forces to permanently deform the flexible structure or cause the structure to touch an opposite wall of the cavity. The flexible structure bonded to the pedestal and an elevated region surrounding the pedestal defines a cavity between the flexible membrane and a lower plane region. Active regions can be formed in the lower plane region for capacitors or transistors. A pedestal can be of various shapes including a circular, ovoid, rectangular or polygonal shape. The lower plane region can be of various shapes including a ring or donut shape, ovoid, rectangular or polygonal shape with an inner dimension corresponding to the outer dimension of the pedestal. The elevated region can be of various shapes with an inner dimension corresponding to the outer dimension of the lower plane region. Alternative embodiments of the invention include cavities containing multiple pedestals which may be concentric. Additionally, a central pedestal may be hollow to increase sensor volume. The device can be a capacitive sensor with plates in the active region and the flexible structure. The device can be a piezoresistive sensor with the flexible structure containing piezoresistive elements. The device can also be a transistor with source, drain, and channel in the active regions of the substrate and the flexible structure containing a gate.
Abstract:
An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/N2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.
Abstract:
A biological inplantable pressure sensor element comprises a fixed volume pouch formed by a sealed, flexible, impermeable membrane comprising therewithin a gel mass contained in a gel volume, said gel being hydrated with an aqueous solution comprising an agent having at least a first and a second NMR-detectable form, the proportion of the first to the second form of the agent in the gel volume being determined by their electrolytic interaction with the gel, whereby when an external pressure is applied to the sensor element a d(chemical shift)/d(.sigma./K) greater than 0.0001 ppm is attained, wherein .sigma. is the external pressure and K is the modulus of the gel. A kit contains sterile, individually wrapped sensor elements.A method of measuring in vivo contact stress applied to an implanted pressure sensor element, comprises implanting the pressure sensor of the invention into a situs of a subject in need of such measurement, non-invasively subjecting the subject situs to a nuclear magnetic resonance source effective to detect said NMR-detectible agent, obtaining the NMR spectrum of said agent, obtaining the chemical shifts from the spectrum, repeating steps (b) to (d) at least once at a desired time interval, comparing the chemical shifts obtaining in step (d) at different time intervals, and calculating the contact stress applied to said sensor element at a desired time from a correlation of observed chemical shifts for normalized stresses (.sigma./K) for the sensor element.A method of measuring in vitro contact stress applied to a pressure sensor element, comprises placing the stress sensor element of the invention in contact with a biological tissue in culture, non-invasively subjecting the biological tissue to a nuclear magnetic resonance source effective to detect said NMR-detectible agent, obtaining the NMR spectrum of said agent, obtaining the chemical shifts from the spectrum, repeating steps (b) to (d) at least once at a desired time interval, comparing the chemical shifts obtained in step (d) at different time intervals, and calculating the contact stress applied to said sensor element at a desired time from a correlation of observed chemical shifts to normalized stresses (.sigma./K) for the sensor element.
Abstract:
A method and apparatus for measuring the motion of tall structures, particularly offshore platforms. The method comprises disposing a number of accelerometer packages in a tubular member attached to a vertical or near vertical member of the structure. Each package contains three accelerometers having their axes dipsosed in an orthogonal arrangement. The apparatus includes means for installing and removing a plurality of packages from tubular members or chutes that are permanently attached to the structure.
Abstract:
A force measuring procedure and a force measuring apparatus are used to control the power hoist of an agricultural tractor. The force measuring procedure operates in such a manner that the relative displacement of a point on an elastic system is detected by at least one Hall sensor disposed on either the elastic system or on the fixed frame with the Hall sensor being located in a magnetic field with a predeterminable magnetic flux. For this the force measuring apparatus has a flex rod attached to at least one of a pair of lower hitches which indicates the bending moment, and the Hall sensor is mounted with its detector surface essentially in the primary plane of bending deformation of the flex rod and is connected to the control circuit of the power hoist. The described force measuring procedure and the force measuring apparatus operating with this procedure produce the particular advantage that the mounting of the parts needed for the apparatus becomes extremely simple, with a resulting high degree of measuring precision and operating reliability assured for the apparatus. The force measuring procedure and the force measuring apparatus can thus be used to particular advantage whenever the objective is to continuously monitor the construction elements of a mass produced mechanical system.
Abstract:
A device for measuring small units of force or weight, such as the tracking force of a phonograph cartridge, includes an elastic flexure member having an electric contact for engagement with an encoder. As the flexure member is deflected by an amount proportional to the force being measured, contacts on the encoder are sequentially activated to provide an electric signal used to drive on analog, digital or numeric visual display or readout of the measured force. The device of the invention may also include a mechanism for providing a second point of support for the flexure member and a second visual scale to provide a greater range of measurement.
Abstract:
For use in an electronic weighing or force measuring system having a load cell providing an output signal representing measured force or weight, a ratiometric analog-to-digital converter operative with a low level differential input signal from the load cell and providing differential sensing of load cell excitation for use as a reference signal and generation of any required offset signal.
Abstract:
The invention relates to a device for transmitting force, comprising a movable means which receives the force to be transmitted and produces an electric current depending on the value of the said force, a movable coil fed by this electric current and rotating according to an angle depending on its value, a spring mechanically connected, on the one hand, to the means which receives the force and, on the other, to the movable coil, the coupling forced on the spring from the movable coil being opposed to the displacement of the movable means which receives the force.