Abstract:
A cathode-grid plate of a field-effect flat display screen of the type including a first set of row conductors, a second set of column conductors and, for each screen pixel, defined by the intersection of a column and of a line, an element for temporarily storing the luminance control signal of the considered pixel.
Abstract:
Described herein is a resistor layer for use in field emission display devices and the like, and its method of manufacture. The resistor layer is an amorphous silicon layer doped with nitrogen and phosphorus. Nitrogen concentration in the resistor layer is preferably between about 5 and 15 atomic percent. The presence of nitrogen and phosphorus in the silicon prevents diffusion of Si atoms into metal conductive layers such as aluminum, even up to diffusion and packaging temperatures. The nitrogen and phosphorus also prevent defects from forming at the boundary between the resistor layer and metal conductor. This leads to better control over shorting and improved resistivity in the resistor.
Abstract:
New uses of statins as novel types of immunomodulator. More specifically, the invention relates to methods for treating multiple sclerosis through the administration of one or more statins, and even more advantageously, in combination with other multiple sclerosis agents or treatments, such as null-interferons or copaxone.
Abstract:
A field emission type cold cathode device comprises a substrate, and a metal plating layer formed on the substrate, the metal plating layer contains at least one carbon structure selected from a group of fullerenes and carbon nanotubes, the carbon structure is stuck out from the metal plating layer and a part of the carbon structure is buried in the metal plating layer.
Abstract:
An electron emitting device includes at least a first electrode and an electron emitting section provided on the first electrode. The electron emitting section is formed of a particle or an aggregate of particles. The particle contains a carbon material having a carbon six-membered ring structure. The carbon material having a carbon six-membered ring structure contains, for example, graphite or a carbon nanotube as a main component.
Abstract:
An enhanced Spindt-tip field emitter tip and a method for producing the enhanced Spindt-tip field emitter. A thin-film resistive heating element is positioned below the field emitter tip to allow for resistive heating of the tip in order to sharpen the tip and to remove adsorbed contaminants from the surface of the tip. Metal layers of the enhanced field emission device are separated by relatively thick dielectric bilayers, with the metal layers having increased thickness in the proximity of a cylindrical well in which the field emitter tip is deposited. Dielectric material is pulled back from the cylindrical aperture into which the field emitter tip is deposited in order to decrease buildup of conductive contaminants and the possibility of short circuits between metallic layers.
Abstract:
A ballast layer for a field emissive device includes a very thin layer of strongly doped nanocrystalline silicon and one or more moderately doped layers of an amorphous silicon-based material.
Abstract:
The present invention includes field effect transistors, field emission apparatuses, thin film transistors, and methods of forming field effect transistors. According to one embodiment, a field effect transistor includes a semiconductive layer configured to form a channel region; a pair of spaced conductively doped semiconductive regions in electrical connection with the channel region of the semiconductive layer; a gate intermediate the semiconductive regions; and a gate dielectric layer intermediate the semiconductive layer and the gate, the gate dielectric layer being configured to align the gate with the channel region of the semiconductive layer. In one aspect, chemical-mechanical polishing self-aligns the gate with the channel region. According to another aspect, a field emission device, includes a transistor configured to control the emission of electrons from an emitter.
Abstract:
Triode pixel devices and complementary triode logic devices for control of the pixel devices are disclosed. The pixel and logic devices are integrally fabricated in arrays suitable for full color flat display panels. Both pixel and logic elements are operated in a gate controlled avalanche mode. Pixel elements are formed from organic or inorganic electroluminescent (EL) materials ohmically contacted by low work function metal. The depletion region necessary for controlling EL intensity or preventing EL avalanche is affected by potentials to a gate element injected into the EL material. The shape of the gate element multiplies the field produced by the gate potential. Luminescence is directly viewed from the brighter, lateral EL emission not available in the prior art. The complementary logic devices are formed from separate depositions of n-type and p-type silicon with their respective gates connected in common. A manufacturing process to produce economical full color, large area, flat-panel, displays of high pixel density and redundancy is described. Small area high pixel density displays suitable for head-mounted military, avionic, and virtual reality display products are also discussed.
Abstract:
A field emission device comprises an anode plate, an emitter plate having a plurality of filed emission portions that face the anode plate, and a gate plate having openings corresponding to the filed emission portions. The field emission device also comprises a current limiting element composed of a J FET or a MOSFET that is integrally formed with the gate plate and that is inserted between the gate plate and a gate voltage supply terminal. The loss caused by the emitter current is small as the current limiting element is inserted into a gate input portion. If the field emission device including a number of blocks each having the above structure is constituted, a power switching device having sufficient redundancy against a short circuit between the gate and the emitter can be implemented.