Abstract:
The vehicle front body structure (2) comprises an upper longitudinal beam (10, 12) and a reinforcing element (14,16) for reinforcing the wheel casing of the vehicle, said reinforcing element (14, 16) extending in a longitudinal direction substantially parallel to the upper longitudinal beam (10, 12), said upper longitudinal beam (10, 12) comprising an attachment portion (40), comprising an attachment area for attaching a connecting element (8) joining the upper longitudinal beam (10, 12) to a lower beam (22, 24) of the vehicle. The vehicle front body structure (2) further comprises a linking element (18, 20) joining the reinforcing element (14, 16) and the upper longitudinal beam (10, 12). The linking element (18, 20) is attached to the attachment portion (40) of the upper longitudinal beam (10, 12).
Abstract:
The present invention provides a panel equipped with a photovoltaic device including an even number of columns of photovoltaic modules, the columns being aligned essentially parallel to a longitudinal edge of the panel. Each column includes an electrical pole on each of extremity. The polarity of an electrical pole of one extremity being the inverse of that of the electrical pole of the other extremity, the poles of two adjacent columns being of inverse polarity, the electrical pole being in the form of a male connector when it is of one polarity and in the form of a female connector when it is of the inverse polarity. The male connectors and female connectors arranged so that they interlock with one another when the lower transverse edge of an upper panel overlaps the upper transverse edge of a lower panel. The present invention further provides an assembly of panels, an electrical device connected to a converter including an assembly and a method for the electrical connection to a converter of the panels of the assembly.
Abstract:
A method for producing a high strength coated steel sheet having a yield stress YS>800 MPa, a tensile strength TS>1180 MPa, and improved formability and ductility. The steel contains: 15%≦C≦0.25%, 1.2%≦Si≦1.8%, 2%≦Mn≦2.4%, 0.1% 23 Cr≦0.25%, Al≦0.5%, the remainder being Fe and unavoidable impurities. The sheet is annealed at a temperature higher than Ac3 and lower than 1000° C. for a time of more than 30 s, then quenched by cooling it to a quenching temperature QT between 250° C. and 350° C., to obtain a structure consisting of at least 60% of martensite and a sufficient austenite content such that the final structure contains 3% to 15% of residual austenite and 85% to 97% of martensite and bainite without ferrite, then heated to a partitioning temperature PT between 430° C. and 480° C. and maintained at this temperature for a partitioning time Pt between 10 s and 90 s, then hot dip coated and cooled to the room temperature.
Abstract:
The invention deals with a cold rolled and hot dip steel sheet, with a tensile strength of at least 980 MPa, with yield strength above or equal to 500 MPa, with total elongation above or equal to 8%, the composition consisting by weight percent: 0.05
Abstract:
A method for producing a high strength steel sheet having a yield strength YS of at least 850 MPa, a tensile strength TS of at least 1180 MPa, a total elongation of at least 14% and a hole expansion ratio HER of at least 30%. The chemical composition of the steel contains: 0.15%≦C≦0.25%, 1.2%≦Si≦1.8%, 2%≦Mn≦2.4%, 0.1%≦Cr≦0.25%, Nb≦0.05%, Ti≦0.05%, Al≦0.50%, the remainder being Fe and unavoidable impurities. The sheet is annealed at an annealing temperature TA higher than Ac3 but less than 1000° C. for more than 30 s, by cooling it to a quenching temperature QT between 275° C. and 325° C., at a cooling speed sufficient to have, just after quenching, a structure consisting of austenite and at least 50% of martensite, the austenite content en.) being such that the final structure can contain between 3% and 15% of residual austenite and between 85 and 97% of the sum of martensite and bainite, without ferrite, heated to a partitioning temperature PT between 420° C. and 470° C. and maintained at this temperature for time between 50 s and 150 s and cooled to the room temperature.
Abstract:
A metal sheet including a substrate having at least one face coated by a metallic coating is provided. The metallic coating has an aluminum content by weight tAl of between 3.6 and 3.8% a magnesium content by weight tMg of between 2.7 and 3.3%. The coating has a microstructure comprising a lamellar matrix of eutectic ternary Zn/Al/MgZn2 and possibly: dendrites of Zn with an accumulated surface content exceeding 5.0%, flowers of binary eutectic of Zn/MgZn2 with an accumulated surface content less than or equal to 15.0%, dendrites of binary eutectic Zn/Al surface with an accumulated surface content of less than 1.0% islets of MgZn2 with an accumulated surface content below 1.0%.
Abstract:
A method of making a hypereutectoid, head-hardened steel rail is provided that includes a step of head hardening a steel rail having a composition containing 0.86-1.00 wt % carbon, 0.40-0.75 wt % manganese, 0.40-1.00 wt % silicon, 0.05-0.15 wt % vanadium, 0.015-0.030 wt % titanium, and sufficient nitrogen to react with the titanium to form titanium nitride. Head hardening is conducted at a cooling rate that, if plotted on a graph with xy-coordinates with the x-axis representing cooling time in seconds, and the y-axis representing temperature in Celsius of the surface of the head of the steel rail, is maintained in a region between an upper cooling rate boundary plot defined by an upper line connecting xy-coordinates (0 s, 775° C.), (20 s, 670° C.), and (110 s, 550° C.) and a lower cooling rate boundary plot defined by a lower line connecting xy-coordinates (0 s, 750° C.), (20 s, 610° C.), and (110 s, 500° C.).
Abstract:
A method for manufacturing parts is provided. The method includes cold rolling a substrate with work cylinders whose work surface has a roughness Ra2.5 of less than or equal to 3.6 μm, depositing the metal coating on at least one face of the annealed substrate by electrodeposition to form the metal sheet and deforming the cut metal sheet to form the parts. The outer surface of the metal coating has a waviness Wa0.8 of less than or equal to 0.5 μm after the deformation step. A part and vehicle are also provided.
Abstract:
A lower carbon steel alloy with specific substitutional alloying additions. The alloy is useful in the production of ASTM A516 grade pressure vessel steel plates with excellent HIC resistance. The material has a ferrite-pearlite microstructure, in normalized and stress relieved condition, appropriate for resisting hydrogen induced cracking, with isolated ferrite and pearlite constituents and no continuous pearlite bands. The material exhibits significant low temperature toughness.
Abstract:
A cold rolled steel wire having the following chemical composition expressed in percent by weight, 0.2≦C %≦0.6, 0.5≦Mn %≦1.0, 0.1≦Si≦0.5%, 0.2≦Cr≦1.0%, P≦0.020%, S≦0.015%, N≦0.010%, and optionally not more than 0.07% Al, not more than 0.2% Ni, not more than 0.1% Mo and not more than 0.1% Cu, the balance being iron and the unavoidable impurities due to processing. This wire has a microstructure including bainite and, optionally, up to 35% acicular ferrite and up to 15% pearlite. A fabrication method and flexible conduits for hydrocarbon extraction are also provided.