Abstract:
A unit pixel array of an image sensor includes a semiconductor substrate having a plurality of photodiodes, an interlayer insulation layer on a front-side of the semiconductor substrate, and a plurality of micro lenses on a back-side of the semiconductor substrate. The unit pixel array of the image sensor further includes a wavelength adjustment film portion between each of the micro lenses and the back-side of the semiconductor substrate such that a plurality of wavelength adjustment film portions correspond with the plurality of micro lenses.
Abstract:
A complementary metal-oxide-semiconductor (CMOS) image sensor, including a wiring layer, a photodiode stacked with the wiring layer, a micro-lens stacked on the photodiode, an anti-reflection layer stacked on the photodiode. An anti-absorption layer may be provided between the photodiode and the anti-reflection layer. The photodiode may include a first portion and a second portion. Light may be focused on the first portion by the micro-lens and the second portion may at least partially surround the first portion. A material of the first portion may have a refractive index higher than a refractive index of a material of the second portion. The anti-absorption layer may include a compound semiconductor having an energy band gap greater than an energy band gap of a semiconductor included in the photodiode.
Abstract:
A method of manufacturing an image sensor is provided. In this method, a photoelectric conversion unit may be formed within a semiconductor substrate, wherein the semiconductor substrate includes an active pixel region and an optical black region. An annealing layer may be formed on the active pixel region and the optical black region and etched so that the annealing layer covers at least a portion of the optical black region. A wiring pattern may be formed on the annealing layer. A light-blocking pattern may be formed on the wiring pattern so as to cover the entire photoelectric conversion unit of the optical black region, thereby blocking light from being incident upon the optical black region.
Abstract:
A current limitation method of a display device includes: calculating a brightness average in each frame of an inputted image; calculating a brightness difference between successive frames of the image by using the calculated brightness average, and calculating a cumulative average brightness value by cumulating the brightness average with respect to the frames included in a frame length which is varied depending on the brightness difference; converting the cumulative average brightness value into a preset brightness adjustment value; and adjusting the brightness of the inputted image according to the brightness adjustment value.
Abstract:
A semiconductor device includes a second conductive-type deep well configured above a substrate. The deep well includes an ion implantation region and a diffusion region. A first conductive-type first well is formed in the diffusion region. A gate electrode extends over portions of the ion implantation region and of the diffusion region, and partially overlaps the first well. The ion implantation region has a uniform impurity concentration whereas the impurity concentration of the diffusion region varies from being the highest concentration at the boundary interface between the ion implantation region and the diffusion region to being the lowest at the portion of the diffusion region that is the farthest away from the boundary interface.
Abstract:
A method of fabricating a T-gate is provided. The method includes the steps of: forming a photoresist layer on a substrate; patterning the photoresist layer formed on the substrate and forming a first opening; forming a first insulating layer on the photoresist layer and the substrate; removing the first insulating layer and forming a second opening to expose the substrate; forming a second insulating layer on the first insulating layer; removing the second insulating layer and forming a third opening to expose the substrate; forming a metal layer on the second insulating layer on which the photoresist layer and the third opening are formed; and removing the metal layer formed on the photoresist layer. Accordingly, a uniform and elaborate opening defining the length of a gate may be formed by deposition of the insulating layer and a blanket dry etching process, and thus a more elaborate micro T-gate electrode may be fabricated.
Abstract:
The present invention provides a horizontal linear vibrator which can reduce the thickness but increase the strength of vibrations while at the same time guaranteeing a sufficiently long lifetime and satisfactory responsivity. The horizontal linear vibrator includes a casing, a bracket, a vibration unit and springs. The casing defines an internal space therein. A first magnet is attached to an upper plate of the casing. The bracket is coupled to the lower end of the casing. The second magnet is attached to the bracket such that different poles of the first and second magnets face each other. The vibration unit has a weight, and a cylindrical coil which is provided in or under the weight. The springs are coupled to the sidewall plates of the casing or the bracket. The springs elastically support the vibration unit to allow the vibration unit to vibrate in the horizontal direction.
Abstract:
A linear vibrator is disclosed. In accordance with an embodiment of the present invention, the linear vibrator includes a base, a coil unit, which is coupled to the base, a magnet, which is coupled to the coil unit such that the magnet can move relatively with respect to the coil unit, and a leaf spring, which is interposed between the magnet and the base and includes a plurality of plate-shaped members having center portions thereof being separated from one another and both respective ends thereof being coupled to one another. Thus, the linear vibrator can increase the range of displacement in the leaf spring and increase the magnitude of vibration in the linear vibrator.
Abstract:
The present invention relates to a display device including a substrate having a display area, a first electrode disposed on the substrate to receive a first voltage, a second electrode disposed on the substrate to receive a second voltage having an opposite polarity to that of the first voltage, an insulating layer disposed on the first electrode and the second electrode, and an isolated member disposed on the insulating layer and electrically isolated, wherein an induction charge is generated in the isolated member by application of the first voltage and the second voltage, and wherein light transmittance is controlled according to the application of the first and second voltages.