摘要:
A method for forming an aluminum containing conductor layer. There is first provided a substrate. There is then formed over the substrate a titanium layer employing an ionized metal plasma bias sputtering method. Finally there is then formed upon the titanium layer an aluminum containing conductor layer. By employing the ionized metal plasma bias sputtering method for forming the titanium layer, the aluminum containing conductor layer is formed with an enhanced (111) crystallographic orientation. The method is particularly useful for forming aluminum containing conductor layers with enhanced electromigration resistance, even under circumstances where there is formed interposed between a titanium layer and an aluminum containing conductor layer a titanium nitride layer.
摘要:
A method of fabricating a damascene structure for copper conductors. Layers of first, second, and third dielectric are formed on a silicon substrate having devices formed therein. The second dielectric will subsequently act as an etch stop. The third dielectric is a sacrificial layer used to protect the second dielectric. Contact holes are then etched in the layers of first, second, and third dielectric. A first barrier metal and a first conductor metal are then deposited filling the contact hole. The first barrier metal and first conductor metal are then removed down to a level between the original top surface of the layer of third dielectric and the top surface of the second dielectric using a method such as chemical mechanical polishing. The sacrificial third dielectric protects the layer of second dielectric during the chemical mechanical polishing. A layer of fourth dielectric is then deposited. Trenches are then etched in the fourth dielectric using the second dielectric, which has been maintained intact by the sacrificial third dielectric, as an etch stop. The trenches are then filled with a second barrier metal and second conductor metal. Excess second barrier metal and second conductor metal are then removed using chemical mechanical polishing to complete the damascene structure.
摘要:
A method to planarize the surface of a semiconductor substrate having shallow trench isolation (STI) reduces erosion of a silicon nitride planarization stop layer, reduces dishing of large areas of the shallow trench isolation, and prevents under polishing of the surface of the semiconductor substrate that will leave portions of the silicon dioxide that fills the shallow trenches covering the silicon nitride planarization stop exposed, is described. The method to planarize the surface of a semiconductor substrate having shallow trenches begins by chemical/mechanical planarization polishing at a first product of platen pressure and platen speed to planarize the semiconductor substrate. Polishing at a first product of platen pressure and platen speed will cause a high rate of material removal with low selectivity to increase production throughput. The silicon nitride stop layer will be examined to determine an end point exposure of the silicon nitride stop layer. When the end point exposure of the silicon nitride stop layer is reached, chemical/mechanical planarization polishing at a low product of platen pressure and platen speed is started to planarize the semiconductor substrate of slow over polish to control thickness of a trench oxide of the shallow trench isolation to reduce dishing and minimize erosion. The method further has the step of buffing the surface of the semiconductor substrate to remove any residue from the chemical/mechanical planarization polishing and to remove any microscratches from the surface of the semiconductor substrate.
摘要:
A method to form copper interconnects with an improved encapsulation layer is achieved. A substrate layer is provided. Conductive traces are provided overlying the substrate layer. A first intermetal dielectric layer is deposited overlying the conductive traces. The first intermetal dielectric layer is etched through to the underlying conductive traces where the first intermetal dielectric layer is not protected by a photoresist mask to form interconnect trenches. A barrier layer is deposited overlying the first intermetal dielectric layer and exposed the conductive traces. A copper layer is deposited overlying the barrier layer and filling the interconnect trenches. The copper layer and the barrier layer are polished down to the top surface of the first intermetal dielectric layer to define copper interconnects. An encapsulation layer is formed overlying the copper interconnects wherein the encapsulation layer is not formed overlying the first intermetal interconnect layer and wherein the encapsulation layer is at least partially comprised of tungsten nitride. A second intermetal dielectric layer is deposited and the fabrication of the integrated circuit device is completed.
摘要:
A process for removal of residual silicon oxide hardmask used to etch vias in low-k organic polymer dielectric layers is described. The hardmask deteriorates by developing an angular aspect or faceting along the pattern edges when used to etch organic polymer layers in an oxygen/inert gas plasma in a high density plasma etcher. In addition the deterioration of the hardmask during organic polymer etching causes a significant degradation of surface planarity which would result in via-to-via shorts when a second metal layer is patterned over it if the hardmask were left in place. The residual hardmask is selectively removed immediately after the via etch by a soft plasma etch which restores surface planarity and removes via edge facets. The plasma etch has a high selectivity of oxide-to-organic polymer so that the surface irregularities are not transferred to the polymer surface and the exposed metal surface at the base of the via is also unscathed.
摘要:
A method is disclosed for forming inlaid copper interconnects in an insulating layer without the normally expected dishing that occurs after chemical-mechanical polishing of the excess copper. This is accomplished by forming a conformal blanket barrier layer over a substrate including a composite groove/hole structure already formed in an insulating layer and then growing a copper seed layer over the barrier layer. A layer of photoresist is next deposited over the substrate filling the composite structure. The photoresist layer, seed layer and the barrier layer are then removed by chemical-mechanical polishing, leaving the seed layer and the barrier layer on the inside walls of the composite structure, however. Then the photoresist is removed from the composite structure, and replaced, in its place, with electroless plated copper, which forms a dome-like protrusion extending from the composite structure. When the substrate is subjected to chemical-mechanical polishing in order to remove the excess copper, the dome-like structure prevents the dishing of the copper metal. In a second embodiment, the seed layer and the barrier layer are chemical-mechanical polished without first depositing a photoresist layer. Copper metal is next selectively formed by electroless plating having a dome-like protrusion, which in turn is removed by chemical-mechanical polishing without the detrimental formation of dishing in the copper metal.
摘要:
Described is a novel method for the formation of topological features during the processing of a semiconductor wafer into integrated circuit devices. The present invention is most useful for those processes used to form advanced multilevel ultra-large scale integrated circuits where global planarization techniques, such as chemical mechanical polishing, is used. The present invention is applicable to all processes used to form modem high density, multilevel integrated circuits and without respect of the number of layers formed or materials used. In the present invention, a substrate is a semiconductor wafer or portion thereof, and is the material on which the described processes alter and the layers are formed.
摘要:
A new method of improving critical dimension control by using a silylation process with a cross-linked photoresist underlayer is described. A layer to be etched is provided on a semiconductor substrate wherein the surface of the layer has an uneven topography. The layer to be etched is coated with a first photoresist layer. The first photoresist layer is baked. The first photoresist layer is coated with a second photoresist layer. A portion of the second photoresist layer not covered by a mask is exposed to actinic light. Thereafter, the exposed portion of the second photoresist layer is baked, then silylated. The silylated portion of the second photoresist layer and the underlying first photoresist layer forms the photomask. The remaining second and first photoresist layers not covered by the photomask are etched away. The layer to be etched is etched away where it is not covered by the photomask and the photomask is removed to complete the photoetching having uniform critical dimension in the fabrication of an integrated circuit.
摘要:
A method of patterning a layer of reflective material, such as a layer of conductor metal, using a layer of antireflection coating material sandwiched between two layers of photoresist. A first layer of photoresist is formed on an integrated circuit wafer and provides a planar surface for subsequent layers of material. A layer of antireflection coating material is formed on the layer of first photoresist and a layer of second photoresist is formed on the layer of antireflection coating material. The layer of second photoresist is selectively exposed and developed. The layer of antireflection coating material is patterned using dry etching and the patterned layer of second photoresist as a mask. The layer of first photoresist is then patterned using dry etching and the patterned layer of antireflection coating material as a mask. The layer of reflecting material is then patterned using dry etching and the patterned layer of first photoresist as a mask. The patterned layer of first photoresist is then removed.
摘要:
A method for improving the end-point detection for contact and via etching is disclosed. The disclosure describes the deliberate addition of dummy patterns in the form of contact and via holes to the regular functional holes in order to increase the amount of etchable surface area. It is shown that, one can then take advantage of the marked change in the composition of the etchant gas species that occurs as soon as what was once a large exposed area has now been consumed through the etching process. This then gives a strong and robust signal for the end of the etching process. This in turn results in better controlled and more reliable product. It is also indicated that with the full uniform pattern of the via layers now possible, the chemical/mechanical polishing process becomes much less pattern sensitive.