Abstract:
A gas turbine engine includes a rotor that has a rim, blades extending radially outwards from the rim, a hub extending radially inwards from the rim, an arm extending axially from the rim, the arm having a radially outer surface, and a coating disposed on the radially outer surface. The coating is zirconia-toughened alumina in which the alumina is a matrix with grains of the zirconia dispersed there through. The grains of zirconia are predominantly a tetragonal crystal structure.
Abstract:
A component for a gas turbine engine includes an airfoil section including a free end and an abrasive coating sprayed onto the free end, the abrasive coating including a polymer matrix and an abrasive filler, the abrasive filler between about 50%-75% by volume of the abrasive coating.
Abstract:
A method is provided for manufacturing a blade. The blade comprises an airfoil (100) having: a root end and a tip (106); a metallic substrate (102) along at least a portion of the airfoil; and an anodized layer (154). The method comprises roughening the tip to form protrusions (158′; 402′) and anodizing to form the anodized layer so that the protrusions form an abrasive (156; 400).
Abstract:
A blade outer air seal (BOAS) or segment thereof comprises: a metallic substrate having an inner diameter (ID) surface; and a coating system along the inner diameter surface comprises: a bondcoat atop the substrate; and a ceramic barrier coat atop the bondcoat. The bondcoat has a combined content of one or more of molybdenum, chromium, and vanadium of at least 50 percent by weight.
Abstract:
An air seal for use in a gas turbine engine. The seal includes a thermally sprayed abradable seal layer. The abradable material is composed of aluminum powder forming a metal matrix, and co-deposited methyl methacrylate particles and/or hexagonal boron nitride particles embedded as filler in the metal matrix.
Abstract:
A coated substrate comprises: a metallic substrate; a bondcoat atop the substrate; and a ceramic barrier coat atop the bondcoat. The bondcoat has a combined content of one or more of molybdenum, chromium, and vanadium of at least 50 percent by weight.
Abstract:
A method of manufacturing a net shaped seal comprises depositing a first layer of fine powder comprising an abradable feed stock material on a substrate. The method includes guiding a heat source over the fine powder material layer; fusing together the fine powder material; depositing a second layer of fine powder material over the first layer; fusing the second layer of fine powder material with a second pass of the heat source at predetermined locations; and repeating the depositing step and fusing step to form subsequent layers to form an abradable seal on the substrate.
Abstract:
A component for high temperature applications includes a substrate and a layer of an aluminum-containing MAX phase material and another material applied to the substrate.
Abstract:
A method of manufacturing a fiber reinforced coating. The method includes providing a substrate and plasma spraying a ceramic matrix having fibers encapsulated in a precursor material onto the substrate.
Abstract:
An air seal system for a rotor blade assembly of a gas turbine engine includes a substrate. An optional ceramic interlayer may be disposed on an optional bond coat deposited on the substrate. An erosion resistant thermal barrier coating (E-TBC) layer is disposed on the ceramic interlayer (if present) or on the bond coat, or on the substrate. An abradable layer is disposed on the erosion resistant thermal barrier coating (E-TBC) layer.