Abstract:
A voltage-controlled oscillator includes (i) a first variable-capacity element, (ii) a resonance circuit whose resonance frequency changes in accordance with a control voltage applied to the first variable-capacity element, (iii) a second variable-capacity element connected in parallel with the first variable-capacity element, (iv) resonance frequency range switching means which switches the variation range of the resonance frequency of the resonance circuit by switching the capacity of the second variable-capacity element, and (v) a resonance frequency correction circuit which corrects the resonance frequency in such a manner as to prevent the ratio between resonance frequencies before and after the switching of the variation range from depending on the control voltage.
Abstract:
In one embodiment, the present invention includes methods and apparatus for providing initial control values to programmable load capacitors of an oscillator, such as that of a real time clock circuit. Using the initial values, the real time clock circuit may begin operation, enabling additional circuitry within an integrated circuit to begin operation. This additional circuitry may cause operating values to program the load capacitors to provide a desired reference clock based on a given system's requirements.
Abstract:
An oscillator includes a plurality of varactor cells to receive a control signal to control a frequency of the oscillator. Each of the varactor cells includes a switch that includes a first terninal to receive the control signal and a second terminal such that the switch operates to control a capacitance of the varactor cell in response to a voltage between the first and second terminals. The oscillator includes a bias circuit to provide a different bias voltage to each second terminal and an amplifier that is coupled to the varactor cells to generate an oscillating signal.
Abstract:
When two oscillation signals are output from a common terminal through switching, to reduce attenuation of the oscillation signals, a dual-band oscillator includes a first oscillating transistor for generating an oscillation signal in a first frequency band; a first inductor for supplying power to a collector of the first oscillating transistor; a first switching element for switching the first oscillating transistor; a second oscillating transistor for generating an oscillation signal in a second frequency band; a second inductor for supplying power to a collector of the second oscillating transistor; a second switching element for switching the second oscillating transistor; and an output terminal for outputting the oscillation signal in the first frequency band or in the second frequency band. The first switching element is disposed between the first inductor and the output terminal, and the second switching element is disposed between the second inductor and the output terminal.
Abstract:
An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit. A receiver front end provides programable attenuation and a programable gain low noise amplifier. LC filters integrated onto the substrate in conjunction with image reject mixers provide image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. Active filters utilize multi track spiral inductors with shields to increase circuit Q. The filters incorporate a gain stage that provides improved dynamic range through the use of cross coupled auxiliary differential pair CMOS amplifiers to cancel distortion in a main linearized differential pair amplifier. Frequency planning provides additional image rejection. Local oscillator signal generation methods on chip reduce distortion. A PLL generates needed out of band LO signals. Direct synthesis generates in band LO signals. PLL VCOs are centered automatically. A differential crystal oscillator provides a frequency reference. Differential signal transmission throughout the receiver is used. ESD protection is provided by a pad ring and ESD clamping structure. Shunts utilize a gate boosting at each pin to discharge ESD build up. An IF VGA utilizes distortion cancellation achieved with cross coupled differential pair amplifiers having their Vds dynamically modified in conjunction with current steering of the differential pairs sources.
Abstract:
In accordance with certain described implementations, a voltage controlled oscillator (VCO) includes a VCO coarse tuning bank having multiple coarse tuning bank bits. Each coarse tuning bank bit has an associated bit capacitance. The bit capacitances of the coarse tuning bank bits may be selectively engaged using, for example, a single switching transistor for each coarse tuning bank bit.
Abstract:
An integrated receiver with channel selection and image rejection is substantially implemented on a single CMOS integrated circuit. A receiver front end provides programable attenuation and a programable gain low noise amplifier. LC filters integrated onto the substrate in conjunction with image reject mixers provide image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. Active filters utilize multi track spiral inductors with shields to increase circuit Q. Frequency planning provides additional image rejection. Local oscillator signal generation methods on chip reduce distortion. A PLL generates needed out of band LO signals. Direct synthesis generates in band LO signals. PLL VCOs are centered automatically. A differential crystal oscillator provides a frequency reference. Differential signal transmission throughout the receiver is used. ESD protection is provided by a pad ring and ESD clamping structure. Shunts utilize a gate boosting at each pin to discharge ESD build up. An IF VGA utilizes distortion cancellation achieved with cross coupled differential pair amplifiers having their Vds dynamically modified in conjunction with current steering of the differential pairs sources.
Abstract:
A programmable capacitor bank includes multiple tuning elements. Each tuning element includes two tuning capacitors and a pass transistor that electrically connects or disconnects the capacitors to/from common nodes. For a thermometer decoded capacitor bank, the tuning capacitors for all tuning elements have equal capacitance. Each tuning element further includes at least one pull-up transistor that provides high bias voltage for the pass transistor and at least one pull-down transistor that provides low bias voltage for the pass transistor. The multiple tuning elements may be arranged in a ladder topology such that (1) the tuning elements are turned on in sequential order starting from one end of the ladder and going toward the other end of the ladder and (2) each tuning element receives biasing from a preceding tuning element and provides biasing to a succeeding tuning element. The capacitor bank may be used for VCOs and other circuits.
Abstract:
An integrated VCO having an improved tuning range over process and temperature variations. There is therefore provided in a present embodiment of the invention an integrated VCO. The VCO comprises, a substrate, a VCO tuning control circuit responsive to a VCO state variable that is disposed upon the substrate, and a VCO disposed upon the substrate, having a tuning control voltage input falling within a VCO tuning range for adjusting a VCO frequency output, and having its tuning range adjusted by the tuning control circuit in response to the VCO state variable.
Abstract:
Improved voltage controlled oscillator (VCO) circuits are disclosed. A symmetrical voltage controlled oscillator (VCO) system according to the embodiments of the present invention comprises a frequency tuning circuit containing one or more varactors for receiving a predetermined tuning signal and a frequency tuning bias signal for altering capacitances of the varactors, a modulation circuit coupled in parallel with the frequency tuning circuit containing one or more varactors for modulating one or more outputs, and a core circuit coupled in a parallel with the tuning circuit and the modulation circuit for providing an oscillation mechanism, wherein the core circuit has an inductance module coupled in a parallel fashion with the frequency tuning circuit and the modulation circuit, wherein circuit elements of the VCO system are symmetrically arranged for increasing oscillation efficiency thereof and the varactors are tuned to deliver the output at an output frequency.