Abstract:
Systems and methods are described for implementing or deploying medical or veterinary utility modules comprising a first module operable in a digestive or respiratory tract to engage a second module, optionally by a magnetic field. Alternatively or additionally, systems may be operable to remain in situ and also operable to permit a therapeutic material dispensation. In some contexts, for example, systems or methods may dispense a therapeutic material via a subject's throat or elsewhere in the digestive or respiratory tract.
Abstract:
Methods and related systems for modulating neural activity by repetitively blocking conduction in peripheral neural structures with chemical blocking agents are disclosed. Methods and systems for reversing effects of chemical blocking agents and/or for producing substantially permanent conduction block are also disclosed.
Abstract:
Methods and related systems for modulating neural activity by repetitively blocking conduction in peripheral neural structures with electrical stimuli are disclosed. Methods and systems for reversing effects of blocking stimuli and/or for producing substantially permanent conduction block are also disclosed.
Abstract:
Methods and related systems for modulating neural activity by repetitively blocking conduction in peripheral neural structures with chemical blocking agents are disclosed. Methods and systems for reversing effects of chemical blocking agents and/or for producing substantially permanent conduction block are also disclosed.
Abstract:
A method and system for converting light to electric power including coupling in parallel at least two devices in a first plurality of devices suitable to convert light to electric power, coupling in parallel at least two devices in at least one additional plurality of devices suitable to convert light to electric power, and coupling in series the first plurality of devices suitable to convert light electricity with the at least one additional plurality of devices suitable to convert light to electric power. A method for converting electromagnetic flux to electric power. A method for optimizing the electric power output of a system including determining the expected illumination pattern of incident laser radiation, and optimizing the amount of laser radiation incident on the surface of the devices suitable to convert light to electric power by distributing the devices according to the expected illumination pattern of the incident laser beam.
Abstract:
Systems and methods are described for implementing or deploying medical or veterinary utility modules comprising a first module operable in a digestive or respiratory tract to engage a second module, optionally by a magnetic field. Alternatively or additionally, systems may be operable to remain in situ and also operable to permit a therapeutic material dispensation. In some contexts, for example, systems or methods may dispense a therapeutic material via a subject's throat or elsewhere in the digestive or respiratory tract.
Abstract:
A method includes receiving epigenetic information associated with at least a first individual and/or assessing at least one corporate liability at least partially based on the epigenetic information associated with at Least a first individual.A system includes means for receiving epigenetic information associated with at Least a first individual and/or means for assessing at least one corporate liability at least partially based on the epigenetic information associated with at least a first individual.A system includes circuitry for receiving epigenetic information associated with at least a first individual and/or circuitry for assessing at least one corporate liability at least partially based on the epigenetic information associated with at least a first individual.
Abstract:
A method and apparatus for improving the performance of Synthetic Aperture Radar (SAR) systems by reducing the effect of “edge losses” associated with nonuniform receiver antenna gain. By moving the receiver antenna pattern in synchrony with the apparent motion of the transmitted pulse along the ground, the maximum available receiver antenna gain can be used at all times. Also, the receiver antenna gain for range-ambiguous return signals may be reduced, in some cases, by a large factor. The beam motion can be implemented by real-time adjustment of phase shifters in an electronically-steered phased-array antenna or by electronic switching of feed horns in a reflector antenna system.
Abstract:
A modified Synthetic Aperture Radar (SAR) system with reduced sensitivity to range ambiguities, and which uses secondary receiver channels to detect the range ambiguous signals and subtract them from the signal received by the main channel. Both desired and range ambiguous signals are detected by a main receiver and by one or more identical secondary receivers. All receivers are connected to a common antenna with two or more feed systems offset in elevation (e.g., a reflector antenna with multiple feed horns or a phased array with multiple phase shift networks. The secondary receiver output(s) is (are) then subtracted from the main receiver output in such a way as to cancel the ambiguous signals while only slightly attenuating the desired signal and slightly increasing the noise in the main channel, and thus does not significantly affect the desired signal. This subtraction may be done in real time, or the outputs of the receivers may be recorded separately and combined during signal processing.