Abstract:
A method and transmitting system for processing data are discussed. The method according to an embodiment includes randomizing enhanced data; first encoding the randomized enhanced data to add first parity data for error correction, thereby forming a frame; dividing data of the frame into a plurality of groups, wherein the plurality of groups have a same size; first interleaving data of each group; second interleaving the first-interleaved data; encoding signaling information at a code rate; and transmitting a broadcast signal including the second-interleaved enhanced data and the encoded signaling information. Second encoding on the randomized enhanced data is selectively performed, wherein, when the second encoding is performed, second parity data for error detection are added to the randomized enhanced data. The signaling information includes transmission parameters to indicate whether the second encoding is performed.
Abstract:
The present invention relates to a digital broadcasting system for transmitting/receiving a digital broadcasting signal and a method of processing data. In one aspect of the present invention provides a method of processing data, the method including receiving a broadcasting signal in which mobile service data and main service data are multiplexed, demodulating the received broadcasting signal, obtaining an identifier indicating that data frame of the broadcasting signal includes service guide information, decoding and storing the service guide information from the data frame; and outputting a service included in the mobile service data according to the decoded service guide information.
Abstract:
A DTV transmitter includes a pre-processor pre-processing enhanced data, a data formatter generating enhanced data packets including the pre-processed enhanced data, and a multiplexer multiplexing the enhanced data packets with main data packets. The transmitter further includes an RS encoder RS-coding the multiplexed packets by adding systematic RS parity data to each main data packet and by adding non-systematic RS parity place holders to each enhanced data packet, and a data interleaver interleaving the RS-coded packets. The non-systematic RS parity place holders are placed after the enhanced data within each interleaved enhanced data packet, and a sequence of known data place holders is periodically included in the interleaved enhanced data packets.
Abstract:
A method of processing additional information related to an announced service or content in a Non-Real Time (NRT) service and the broadcast receiver are disclosed herein. A method of providing a Non-Real Time (NRT) service in a broadcasting receiver includes receiving a service map table (SMT) and a first descriptor through a service signaling channel, identifying an image identifier and an image type of an image for an NRT service based upon the first descriptor, receiving the image via a flute session and displaying the image when corresponding service is played, wherein the image is logo or icon data for the NRT service. The method may further include connecting a service signaling channel, parsing the received SMT and the first descriptor, determining whether a service is the NRT service based upon the parsed SMT and storing the received image.
Abstract:
A DTV transmitting system includes an encoder, a randomizer, a block processor, a group formatter, a deinterleaver, and a packet formatter. The encoder codes enhanced data for error correction, permutes the coded data, and further codes the permuted data for error detection. The randomizer randomizes the coded enhanced data, and the block processor codes the randomized data at an effective coding rate of 1/H. The group formatter forms a group of enhanced data having data regions, and inserts the coded enhanced data into at least one of the data regions. The deinterleaver deinterleaves the group of enhanced data, and the packet formatter formats the deinterleaved data into corresponding data bytes.
Abstract:
A digital broadcasting system and a data processing method are disclosed. A receiver receives a broadcast signal including mobile service data and main service data. A known data detector detects known data from the broadcast signal. An equalizer performs channel equalization on the mobile service data received by means of the detected known data. An RS frame decoder acquires an RS frame from the channel-equalized mobile service data. A management processor extracts a Generic Stream Encapsulation (GSE) packet from a GSE Base Band (BB) constructing one row of the RS frame, and calculates an IP datagram from the extracted GSE packet. A presentation processor displays broadcast data using data contained in the calculated IP datagram.
Abstract:
A digital broadcasting system for transmitting/receiving a digital broadcasting signal and a data processing method are disclosed. A program table information has an identifier identifying mobile service data and main service data in a broadcasting signal. The program table information is multiplexed with the mobile service data and main service data. Then, broadcast receiving system can receive and output the mobile service data by parsing the program table information and using the identifier.
Abstract:
A method of transmitting a broadcast signal in a transmitter is provided. First data is encoded by adding parity data, and second data is encoded by adding parity data with different code rates, respectively. Signaling data is encoded. The encoded first data, the encoded second data, and the encoded signaling data are arranged in a frame among frames. The frames are modulated and transmitted. The frame among frames includes known data for channel estimation. The frames include a plurality of subframes that include a plurality of data units. The frame among frames includes the encoded first data unit and the encoded second data unit. The signaling data includes information for fast service acquisition which allows a receiver to locate upper layer signaling information. The signaling data further includes information on encoding type of data in a data unit, and information on a number of data units carried within a subframe.
Abstract:
A transmitting system and a method of transmitting digital broadcast signal are disclosed. The method of transmitting digital broadcasting signal in a transmitter includes multiplexing a specified number of mobile data packets, a first scalable number of mobile data packets, and a second scalable number of main data packets, interleaving mobile data in the mobile data packets and main data in the main data packets, transmitting the interleaved mobile and main data during a slot, wherein the data group includes a plurality of first blocks, each first block including a plurality of data segments, specified block of the plurality of first blocks including the mobile data, known data sequence, trellis initialization data and RS parity bytes inserted in pre-determined position of the data group, wherein the data group includes a plurality of regions, wherein the last region includes the first scalable number of mobile data packets.
Abstract:
A broadcasting signal receiver and a method for transmitting/receiving a broadcasting signal are disclosed. An identifier of a cell is set in the broadcasting signal and, if the cell is changed, channel information of the changed cell can be obtained from program table information having the channel information of the cell. Accordingly, the broadcasting signal receiver can continuously output a program although the cell is changed.