Abstract:
An improved method and apparatus for automatically aligning probe pins to the test or bond pads of semiconductor devices under changing conditions. In at least one embodiment, a dynamic model is used to predict an impact of changing conditions to wafer probing process. This reduces the need for frequent measurements and calibrations during probing and testing, thereby increasing the number of dice that can be probed and tested in a given period of time and increasing the accuracy of probing at the same time. Embodiments of the present invention also make it possible to adjust positions of probe pins and pads in response to the changing conditions while they are in contact with each other.
Abstract:
An electrically conductive contact element can include a first base and a second base with elongate, spaced apart leaves between the bases. A first end of each leaf can be coupled to the first base and an opposite second end of the leaf can be coupled to the second base. A body of the leaf between the first end and the second end can be sufficiently elongate to respond to a force through said contact element substantially parallel with the first axis and the second axis by first compressing axially while said force is less than a buckling force and then bending while said force is greater than the buckling force.
Abstract:
Embodiments of the present invention can relate to probe card assemblies, multilayer support substrates for use therein, and methods of designing multilayer support substrates for use in probe card assemblies. In some embodiments, a probe card assembly may include a multilayer support substrate engineered to substantially match thermal expansion of a reference material over a desired temperature range; and a probe substrate coupled to the multilayer support substrate. In some embodiments, the reference material may be silicon.
Abstract:
A probe group can include multiple probes for testing devices having contact pads. The probes can comprise beams, contact tip structures, and mounting portions. The beams can provide for controlled deflection of the probes. The contact tip structures can be connected to the beams and can include contact portions for contacting with the devices. The mounting portions of the beams can be attached to support structures, which can be arranged in a staggered pattern. The beams located in a first row of the staggered pattern can include narrowing regions that lie substantially in line with the mounting portions of a second row of the beams.
Abstract:
Traces routed through a computer depiction of a routing area of an electronics system comprise a plurality of connected nodes. Forces are assigned to the nodes, and the nodes are moved in accordance with the forces. The forces may be based on such things as the proximity of the nodes to each other and to obstacles in the routing area. This tends to smooth, straighten and/or shorten the traces, and may also tend to correct design rule violations.
Abstract:
A method of fabricating a large area, multi-element contactor. A segmented contactor is provided for testing semiconductor devices on a wafer that comprises a plurality of contactor units mounted to a substrate. The contactor units are formed, tested, and assembled to a backing substrate. The contactor units may include leads extending laterally for connection to an external instrument such as a burn-in board. The contactor units include conductive areas such as pads that are placed into contact with conductive terminals on devices under test.
Abstract:
An emitter follower or source follower transistor is provided in the channel of a wafer test system between a DUT and a test system controller to enable a low power DUT to drive a test system channel. A bypass resistor is included between the base and emitter of the emitter follower transistor to enable bi-directional signals to be provided between the DUT channel and test system controller, as well as to enable parametric tests to be performed. The emitter follower transistor and bypass resistor can be provided on the probe card, with a pull down termination circuit included in the test system controller. The test system controller can provide compensation for the base to emitter voltage drop of the emitter follower transistor.
Abstract:
Embodiments of methods and apparatus for aligning a probe card assembly in a test system are provided herein. In some embodiments, an apparatus for testing devices may include a probe card assembly having a plurality of probes, each probe having a tip for contacting a device to be tested, and having an identified set of one or more features that are preselected in accordance with selected criteria for aligning the probe card assembly within a prober after installation therein. In some embodiments, the identity of the identified set of one or more features may be communicated to the prober to facilitate a global alignment of the probe card assembly that minimizes an aggregate misalignment of all of the tips in the probe card assembly.
Abstract:
A central test facility transmits wirelessly test data to a local test facility, which tests electronic devices using the test data. The local test facility transmits wirelessly response data generated by the electronic devices back to the central test facility, which analyzes the response data to determine which electronic devices passed the testing. The central test facility may provide the results of the testing to other entities, such as a design facility where the electronic devices were designed or a manufacturing facility where the electronic devices where manufactured. The central test facility may accept requests for test resources from any of a number of local test facilities, schedule test times corresponding to each test request, and at a scheduled test time, wirelessly transmits test data to a corresponding local test facility.
Abstract:
An electrical element can be attached and electrically connected to a substrate by a conductive adhesive material. The conductive adhesive material can electrically connect the electrical element to a terminal or other electrical conductor on the substrate. The conductive adhesive material can be cured by directing a flow of heated gas onto the material or by heating the material through a support structure on which the substrate is located. A non-conductive adhesive material can attach the electrical element to the substrate with a greater adhesive strength than the conductive adhesive. The non-conductive adhesive material can also be cured by directing a flow of heated gas onto the material or by heating the material through the support structure on which the substrate is located. The non-conductive adhesive material can cover the conductive adhesive material.