Abstract:
Improved fuel compositions containing carbon nanotubes in from 0.01% to 30.0% by weight of fuel have improved burn rate and other valuable properties. Improved lubricant compositions containing carbon nanotubes in from 0.01 to 20.0% by weight of lubricant have improved viscosity and other valuable properties.
Abstract:
A diesel fuel additive is provided that includes a plant oil extract, null-carotene, and jojoba oil. The additive may be added to any diesel fuel to reduce emissions of undesired components during combustion of the fuel. A method for preparing the additive is also provided.
Abstract:
A coal-based fuel and fuel additive are provided that include a plant oil extract, null-carotene, and jojoba oil. The additive may be added to any coal-based fuel to reduce emissions of undesired components during combustion of the fuel. A method for preparing the coal-based fuel is also provided.
Abstract:
Novel aviation fuel compositions contain a substantially positive or synergistic combination of an alkyl tertiary butyl ether, an aromatic amine and, optionally, a manganese component. The basefuel containing the additive combination may be a wide boiling range alkylate basefuel.
Abstract:
Non-fossil gaseous fuel, evolved in underwater carbon arcing, and characterized by significant heat content and substantial freedom of its combustion effluents from noxious gases and/or particulates, is similarly useful in whole or part as an additive to predominantly hydrocarbon fuels—whether in bulk storage or transport, flowing in a pipeline, fueling a cutting/welding torch, or fueling an internal-combustion engine. Dosing a predominantly hydrocarbon fuel with all or a selected part of such gaseous fuel mixture inhibits leakage and substantially diminishes noxious effluent gases and particulates as characteristic of the combustion of predominantly hydrocarbon fuels.
Abstract:
Novel aviation fuel compositions contain a substantially positive or synergistic combination of an alkyl tertiary butyl ether, an aromatic amine and, optionally, a manganese component. The basefuel containing the additive combination may be a wide boiling range alkylate basefuel.
Abstract:
A method of treating hydrocarbon fuels with a base metal catalyst is provided for improving the performance of hydrocarbon fuels used internal and external combustion engines The catalyst is a base metal alloy catalyst including tin antimony, lead and mercury. The catalyst operates at ambient temperatures and atmospheric pressure and in the presence of a small but effective quantity of water. The method of treating the fuel with the catalyst may be employed at any point after refining of the fuel and prior to combustion thereof.
Abstract:
A pressurized combustion of slurries of low-cost, unbeneficiated solid fuels in the presence of steam and alkali in which sulfur oxide emissions are inherently low, emissions of nitrogen oxides controlled by the injection of a scavenging agent and emissions of particulates prevented by condensing steam on and around them. The combustion has applications to steam boilers, combined cycles and gas turbines, including steam injected (STIG) and intercooled steam injected (ISTIG) versions. Turbine blade and nozzle erosion and deposits are avoided by the effective wet separation of ash particles before reheating and expansion.
Abstract:
The present invention is directed to processes and apparatus in which supercritical fluids are used as viscosity reduction diluents for liquid fuels or waste materials which are then spray atomized into a combustion chamber. The addition of supercritical fluid to the liquid fuel and/or waste material allows viscous petroleum fractions and other liquids such as viscous waste materials that are too viscous to be atomized (or to be atomized well) to now be atomized by this invention by achieving viscosity reduction and allowing the fuel to produce a combustible spray and improved combustion efficiency. Moreover, the present invention also allows liquid fuels that have suitable viscosities to be better utilized as a fuel by achieving further viscosity reduction that improves atomization still further by reducing droplet size which enhances evaporation of the fuel from the droplets.
Abstract:
Uniform droplets of a liquid are produced by positioning the end of a capillary tube in the throat of a venturi. Gas flowing through the venturi detaches droplets from the end of the capillary tube without requiring high volume gas flow or excessively high velocity of the droplets.