Abstract:
Heat from a safe high energy density fuel, such as aluminum, is used to generate electrical power. In some applications, the fuel may use seawater as an oxidizer. Additionally, the hybrid power system uses a highly efficient and silent thermoacoustic power converter (TAPC) to convert the thermal energy from the oxidation of aluminum to AC electrical energy. The AC electrical energy is converted to DC energy and stored in a battery. In situations demanding low power, the battery can provide power while the fuel combustion process is suspended.
Abstract:
[Problem] To provide a waste combustion method enabling to utilize efficiently heat energy of a large amount of a wet gas generated from a high temperature gas, which is discharged from a waste combustion furnace so as to be cooled and washed[Means for Solving Problem] A method of power generation by waste combustion comprising supplying the waste into a combustion furnace 1 for combustion, feeding a combustion gas from the combustion furnace 1 into a quenching vessel 4 containing a cooling/dissolving water and bringing the combustion exhaust gas into direct contact with the cooling/dissolving water and thus generating a wet gas wherein this wet gas G is supplied directly into a power generation system 10 employing a working medium, or a heat recovery medium, which has been exchanged with the wet gas G, is supplied into the power generation system 10, so that the power generation system is operated
Abstract:
A solar-thermal power plant is provided. The solar-thermal power plant includes a working fluid circuit, a solar steam generator based on direct evaporation and a steam turbine for relieving the working fluid on a relief path while the working fluid supplies technical work. The solar-thermal power plant also includes at least one intermediate superheater, which can be heated using the working fluid. The working fluid may be removed from the circuit upstream of the intermediate superheater and superheated using the working fluid thereof, which can be fed downstream of the heating removal using the relief path. A method for operating a solar-thermal power plant is also provided.
Abstract:
A chemical-looping combustion method uses a metallic oxide (MO) as an oxygen carrier. A fuel (RH) reduces MO at a low temperature in a first reactor, a reduced product (M) is oxidized by oxygen in moistened air in a high-temperature region in a second reactor to form MO which is recycled to the first reactor. Heat generated within these reactors is utilized to drive gas turbines. The reactions within the first and second reactors are:RH+MO.fwdarw.mCO.sub.2 +nH.sub.2 O+M (1)M+0.50.sub.2 .fwdarw.MO (2)Moistened air is the oxygen source in the second reaction. The metallic oxides and their reduced products are particulates including an oxygen permeable medium. The loss of energy in the conversion reactions and in heat exchange is reduced, power generation efficiency is improved, CO.sub.2 is recovered and water resources are saved.
Abstract:
A pressurized combustion of slurries of low-cost, unbeneficiated solid fuels in the presence of steam and alkali in which sulfur oxide emissions are inherently low, emissions of nitrogen oxides controlled by the injection of a scavenging agent and emissions of particulates prevented by condensing steam on and around them. The combustion has applications to steam boilers, combined cycles and gas turbines, including steam injected (STIG) and intercooled steam injected (ISTIG) versions. Turbine blade and nozzle erosion and deposits are avoided by the effective wet separation of ash particles before reheating and expansion.
Abstract:
A closed loop power regeneration system combines chlorine and hydrogen to form hydrogen chloride at high temperatures and pressure. The high temperature, high pressure hydrogen chloride is used to drive a turbine after which the heat from the hydrogen chloride is extracted for use in a regeneration system. The hydrogen chloride is converted to hydrogen and chlorine in the regeneration system. In the regeneration system copper and cuprous chloride react with the hydrogen chloride at a temperature of at least about 200.degree. C. to generate cuprous chloride, cupric chloride and molecular hydrogen. In a second reactor containing cuprous chloride and cupric chloride the extracted thermal energy from the hydrogen chloride is utilized to generate copper, cuprous chloride and molecular chlorine. The molecular chlorine and hydrogen are recombined to form hydrogen chloride in the system. In an alternative embodiment, silver is used as a reagent rather than copper and cuprous chloride.
Abstract:
An apparatus and method of producing electricity comprising passing a low hydrogen content (zero to four percent) air stream over a hydrogenating catalyst in a reaction chamber thereby producing a hot discharge gas which is used to vaporize a liquid hydrocarbon which turns a turbine coupled to a generator.
Abstract:
In a continuous pressurized process for the combustion, in the presence of steam and alkali, of solid fuels charged as aqueous slurries, the improvements comprising the elevation of inlet zone temperature in an entrained phase reactor by recirculating hot solid products to the zone, maintaining increased temperature and/or reduced steam partial pressure in the reactor and/or utilizing contaminated water from an associated fuels processing apparatus as a source of slurry and/or reactor temperature control water. An embodiment suitable for a coal-fired gas turbine locomotive is described and illustrated.
Abstract:
A fuel cell power plant comprising a fuel cell employing a molten carbonate as an electrolyte, a reformer for reforming fuel into a reactive gas to be supplied into the anode of the cell, an expansion turbine connected to a compressor, a combustor for burning a gas exhausted from the anode and introducing the combustion gas into the cathode of the fuel cell along with a gas compressed by the compressor, and a waste heat recovery system. The power plant is characterized by the provision of another combustor on the passage through which cathode exhaust gas is sent from the cathode to the turbine and a passage for leading a part of the anode exhaust gas to the combustor, whereby unburned gas, included in the anode exhaust gas, is burned with the cathode exhaust gas supplied as oxygen source so that the temperature of the turbine driving gas is raised, as a result, the overall thermal efficiency of the power plant increases.
Abstract:
An energy source for a closed cycle engine including a boiler (10) having a working fluid chamber (12) in heat exchange relation with a reaction chamber (14). A closed flow path loop (16, 34, 36, 38, 44, 46, 52) including a turbine (18) receives working fluid from the fluid chamber, provides a power output and returns the fluid to the chamber. Lithium (80) is reacted with water (70) in the reaction chamber (14) to generate heat for heating the working fluid and hydrogen. Oxygen, obtained by decomposition of sodium superoxide (82) elsewhere in the system, is fed to the reaction chamber (14) and combined with the hydrogen to provide water and additional heat for the working fluid.