Abstract:
In one example embodiment, a film includes a coextruded structure having both an extruded ribbed skin layer that includes a plurality of ribs, and a core layer. The ribs are spaced apart by a web that is integral with the ribs. The film also includes a coloring agent that is substantially more apparent in the ribs than in the web, such that a contrast in color and/or color intensity between the ribs and the web is visible.
Abstract:
In one example embodiment, a film includes a coextruded structure having both an extruded ribbed skin layer that includes a plurality of ribs, and a core layer. The ribs are spaced apart by a web that is integral with the ribs. The film also includes a voiding agent in the ribs of the skin layer.
Abstract:
Methods of enhancing one or more physical properties of a thermoplastic film include incrementally stretching thermoplastic films in the machine direction and/or transverse direction. In one or more implementations, methods of incrementally stretching thermoplastic films include reducing the gauge of the films without reducing the films' machine-direction tear resistance. The methods can involve cold stretching the films and imparting rib patterns into the film. The linear ribs can have alternating thick and thin gauges. Incrementally stretched thermoplastic films can have a machine-direction tear resistance that is approximately equal to or greater than the machine-direction tear resistance of the film prior to stretching.
Abstract:
Multi-layered thermoplastic films include intermittent stretched regions that are visually distinct from un-stretched regions. The stretched regions can be white, opaque, and non porous. The multi-layered thermoplastic films with visually-distinct stretched regions can be formed into bags for use as trash can liners or food storage. Additionally, methods of stretching thermoplastic films to create visually distinct stretched regions include incrementally stretching a plurality of film layers, at least one of which includes a thermoplastic material and a voiding agent.
Abstract:
Thermoplastic films include intermittent stretched regions that are visually distinct from un-stretched regions. The stretched regions can be white, opaque, and non porous. The thermoplastic films with visually-distinct stretched regions can be formed into bags for use as trash can liners or food storage. Additionally, methods of stretching thermoplastic films to create non-porous, white, and opaque stretched regions include incrementally stretching a film of a thermoplastic material and a voiding agent.
Abstract:
Methods of incrementally stretching thermoplastic films in the machine direction include elongating the films in the machine direction without reducing the films' machine-direction tear resistance. In one or more implementations, methods of incrementally stretching thermoplastic films include reducing the gauge of the films without reducing the films' machine-direction tear resistance. The methods can involve cold stretching the films and imparting transverse-direction extending linear rib pattern into the film. The linear ribs can have alternating thick and thin gauges. Incrementally stretched thermoplastic films can have a machine-direction tear resistance that is approximately equal to or greater than the machine-direction tear resistance of the film prior to stretching.
Abstract:
Apparatus and methods for creating multi-layered lightly-laminated provide films with increased or maintained strength. An increased level of strength is achieved by bonding adjacent layers of the multi-layer film together in a manner that the bond strength of the laminated layers is less than a strength of a weakest tear resistance of the individual first and second film layers. The inventors have surprisingly found that such a configuration of light bonding provides increased and unexpected strength properties to the multi-layer film as compared to a monolayer film of equal thickness or a multi-layer film in which the plurality of layers are tightly bonded together.
Abstract:
Methods for forming a stock roll including a folded film within another folded film include combining the films and winding them into the stock roll. In particular, one or more implementations of a method of forming a stock roll involve combining films on an extrusion tower. Thus, implementations of the present invention can greatly reduce costs and space requirements, while allowing a single stock roll to feed a bag-making machine in order to produce bag-in-bag structures. One or more implementations further include stock rolls including a first folded film within another folded film.
Abstract:
Multi-layered bags include an outer layer or bag and an inner layer or bag that is shorter than the outer layer or bag. The shortened inner layer or bag can stretch or expand to the outer layer or bag when loaded with objects or otherwise strained. Such multi-layered bags can allow for a reduction in thermoplastic material without compromising the strength of the multi-layered bag. In various implementations, the inner layer or bag may be non-continuously laminated, continuously laminated, or joined only along one or more edges to the outer layer or bag. Implementations including non-continuous bonds securing the inner layer or bag to the outer layer or bag can provide additional strength to the bag. Methods of forming multi-layered bags with a shortened inner layer including inserting an inner layer within an outer layer and then joining the layers to form a bag.
Abstract:
A thermoplastic food wrap film including a plurality of parallel ribs formed therein. To produce the film, a thermoplastic web may be directed between opposing first and second rollers having ridges. The formation of the ribs may increase the width of the web. The film may be formed into a roll and inserted into a box having a cutting strip.