Abstract:
In one aspect, a method for mitigating detonation in a skip fire engine control system is described. The working chambers of the engine are operated in a skip fire manner to deliver a desired torque. One or more detonations are detected in the engine. In response to the detection of the one or more detonations, the spark timing for one or more of the working chambers is retarded. Additionally, the firing fraction used to operate the engine is increased. The increase in the firing fraction helps to compensate for torque lost due to the retarding of the spark timing.
Abstract:
Methods and arrangements for controlling hybrid powertrains are described. In one aspect, an engine is alternatingly operated at different effective displacements. One displacement delivers less than a requested powertrain output and the other delivers more. A motor/generator system is used to add and subtract torque to/from the powertrain to cause the net delivery of the requested powertrain output. In some embodiments, energy added and subtracted from the powertrain is primarily drawn from and stored in a capacitor (e.g., a supercapacitor or an ultracapacitor) when alternating between effective displacements. In another aspect a hybrid powertrain arrangement includes an engine a motor/generator and an energy storage system that includes both a battery and a capacitor. The capacitor stores and delivers electrical energy to the motor/generator unit during operation of the engine in a variable displacement or skip fire mode.
Abstract:
Various methods and data structures for managing transition between different firing fractions during skip fire operation of an engine are described. In some embodiments, transitions are constrained to occur when firing sequence segments of a designated length are shared by the first and second firing fractions. In a separate aspect, a data structure that uses current firing fraction phase as a first index and a target firing fraction as a second index may be used to determine a phase of the target firing fraction to enter at a transition. Is some circumstances transitions between a current and target firing fraction may be conducted as a series of steps through intermediate firing fractions.
Abstract:
In one aspect, an engine controller for an engine including multiple working chambers is described. The engine controller includes a mass air charge determining unit that estimates a mass air charge or amount of air to be delivered to a working chamber. Firing decisions made for a firing window of one or more firing opportunities are used to help determine the mass air charge. The engine controller also includes a firing controller, which is arranged to direct firings to deliver a desired output. Fuel is delivered to a working chamber based on the estimated mass air charge.
Abstract:
Various methods and arrangements for operating a skip fire engine control system are described. In one aspect of the invention, a distinct firing sequence is determined for each bank of working chambers that is used to operate the bank in a skip fire manner. Each firing sequence uses a different firing fraction. In another aspect of the invention, a determination is made as to whether a firing sequence should be dynamically generated or selected from a set of predefined firing sequences.
Abstract:
A variety of skip fire engine controllers and control techniques are described. In some preferred embodiments, a skip fire engine controller is provided that includes a firing fraction calculator, an engine settings controller, a firing fraction adjuster and a firing controller. The firing fraction calculator determines a reference firing fraction indicative of a firing fraction suitable for delivering a desired engine output at a reference working chamber firing output. The engine settings controller is arranged to set selected engine settings. The firing fraction adjuster determines an adjusted firing fraction that scales the reference firing fraction appropriately such that the engine will deliver the desired engine output at the current engine settings even when the actual working chamber firing outputs do not equal the reference working chamber firing output. The firing controller direct workings chamber firings in a skip fire manner that delivers the adjusted firing fraction.
Abstract:
A variety of skip fire engine controllers and control techniques are described. In some preferred embodiments, a skip fire engine controller is provided that includes a firing fraction calculator, an engine settings controller, a firing fraction adjuster and a firing controller. The firing fraction calculator determines a reference firing fraction indicative of a firing fraction suitable for delivering a desired engine output at a reference working chamber firing output. The engine settings controller is arranged to set selected engine settings. The firing fraction adjuster determines an adjusted firing fraction that scales the reference firing fraction appropriately such that the engine will deliver the desired engine output at the current engine settings even when the actual working chamber firing outputs do not equal the reference working chamber firing output. The firing controller direct workings chamber firings in a skip fire manner that delivers the adjusted firing fraction.
Abstract:
A system includes an exhaust aftertreatment system including a particulate filter and a controller. The controller is configured to: receive information comprising a temperature regarding a filter of the aftertreatment system; and responsive to determining that the temperature regarding the filter is below a temperature threshold, command the engine to operate according to a first firing fraction. The first firing fraction may define a number of active cylinders of the engine relative to a total number of cylinders of the engine, and correspond to a predetermined temperature value of the filter.
Abstract:
Systems and methods for aftertreatment system thermal management using cylinder deactivation and/or intake-air throttling are disclosed. Systems and methods for thermal management of an aftertreatment system are provided herein. A controller coupled to an engine and an exhaust aftertreatment system is configured to: receive a first temperature value associated with the exhaust aftertreatment system and a second temperature value associated with the engine; determine, based on comparing the first temperature value to a first threshold, a thermal management mode including a first thermal management mode or a second thermal management mode; determine, responsive to determining the thermal management mode and based on comparing the second temperature value to a second threshold, an operating mode for the thermal management mode including at least one of a first operating mode or a second operating mode; and initiate the at least one of the first or the second operating mode.
Abstract:
A variety of methods and arrangements are described for managing transitions between operational states of an internal combustion engine during skip fire operation of the engine.