Abstract:
An optical head scans the information layer (3) of an optical record carrier (1) by means of a radiation beam (13). Optical aberrations in the beam such as coma and spherical aberration, caused by tilt and thickness variations in the optical disc respectively, are compensated by an aberration compensator (27) arranged in the radiation beam. The tilt or thickness variation is measured by a detector (30) and used to control the aberration compensator. The radiation beam is focused onto the information layer by an objective system (11). A displacement of the objective system in the transverse direction (26) as used for radial tracking of the optical beam, causes a mismatch between the wavefront to be compensated and the wavefront introduced by the aberration compensator (27). The detrimental effects of the mismatch are reduced by compensating only part of the aberration. The degree of compensation depends on the maximum displacement of the objective system and the tolerable wavefront error.
Abstract:
A multi-phase polymeric gel electrolyte for use in a rechargeable lithium battery has an ion-conductivity of more than 1 mS/cm and comprises a continuous ion-conductive liquid phase interpenetrating a solid phase. The solid phase which is obtained by polymerizing alkane monomers has a microscopic network structure which is selected such that when the electrolyte is employed in a rechargeable lithium metal battery, the battery is capable of being fully charged and discharged at a 0.2 C rate more than 20 times without short-circuiting due to dendritic growth. Suitable microscopic network structures are obtained using polydecandioldiacrylates. A method of preparing said electrolytes involves polymerizing a one-phase polymerizable composition which undergoes 1 a phase separation during polymerization.
Abstract:
In a CELP coder a comparison between a target signal and a plurality of synthetic signals is made. The synthetic signal is derived by filtering a plurality of excitation sequences by a synthesis filter having parameters derived from the target signal. The excitation signal which results in a minimum error between the target signal and the synthetic signal is selected. The search for the best excitation signal requires a substantial computational complexity. To reduce the complexity a preselection of a small number of excitation sequences is made by selecting a small number of excitation sequences resembling the most a backward filtered target signal. With this small number of excitation sequences a full complexity search is made. Due to the reduced number of excitation sequences involved in the final selection the required computational complexity is reduced.
Abstract:
An antenna diversity arrangement (200) comprises a plurality of antennas (204a, 204b) capable of forming a plurality of antenna beams. The amplitude and phase relationships between the signals driving each of the antennas (204a, 204b) are first determined for an arrangement where each antenna is replaced by a point source. The results of this analysis are then transformed by reference to the characteristics of the real antenna arrangement (200) to determine appropriate driving signals. The resultant antenna diversity arrangements (200) can have antennas (204a, 204b) located arbitrarily close to one another with near-zero correlation between any pair of the antenna beams, thereby providing a compact and effective arrangement.
Abstract:
The invention relates to a semiconductor device comprising a substrate (1) comprising for instance silicon with thereon a layer (2, 4) comprising at least organic material which contains a passage (6, 8) to the substrate (1). The passage (6,8) has walls (7, 9) transverse to the layer (2, 4). A metal layer (11) is applied on the substrate (1) in at least that portion which adjoins the passage (8). The organic material forming the walls (7, 9) of the passage (6, 8) is covered with an oxide liner (12), and the passage (6, 8) is filled with a metal (14). According to the invention, a metal liner (13) comprising Ti or Ta is provided between the oxide liner (12) and the metal (14) filling the passage (6, 8). It is achieved by this that the device has a better barrier between the organic material (2, 4) and the interconnection metal (14) and that the organic material (2, 4) has a better protection during the various steps of the process.
Abstract:
In a networked communications apparatus, comprising at least one server (10) and a plurality of user stations (12) coupled via a first network (14), storage means (16) hold a profile database containing data representing a characteristic behaviour of an associated user. The user station further comprises a portable communications device (18) connectable to the said at least one server (10) via a second network (22), with the means for automatically acquiring user data storing access data for establishing a connection via said second network with the associated user terminal network address or addresses.
Abstract:
A headlamp (2; 3) of a vehicle (1) has a light source (4; 5) comprising a plurality of opto-electronic elements (11; 12; 13; 14), preferably light-emitting diodes (LED's). At least one of these opto-electronic elements (11; 12; 13; 14) has, in operation, a luminous flux of 5 lm or higher. According to the invention, the spectral characteristic of the light beam (6, 6null; 7, 7null) generated by the light source (4; 5) depends upon the position in the light beam (6, 6null; 7, 7null). Preferably, the light source (4; 5) comprises opto-electronic elements (11; 12; 13; 14) only. The light beam comprises at least two light beam segments (6, 6null; 7, 7null) having essentially different spectral characteristics. Preferably, one of the light beam segments (6null; 7null) is mesotopically tuned. In particular, a first light beam segment (6; 7) comprises a considerable amount of white or yellow-orange light, and a second light beam segment (6null; 7null) comprises a considerable amount of blue-green light.
Abstract:
During recording of an MPEG information signal on a record carrier, transport packets (Pk) are stored in signal blocks in a track on the record carrier. x transport packets of the MPEG information signal are stored in the second block sections (SB) of y signal blocks, where x and y are integers, xnull1 and y>1, more specifically, y>x. Further, third block sections (TB) are present in one or more of the second block sections in the y signal blocks of a group for storing additional information, this additional information relating to the specific application of recording and reproducing the MPEG information signal on/from the record carrier.
Abstract:
The invention relates to a high-voltage deep depletion transistor, provided in a semiconductor body (1) having a substrate (2) of a first conductivity type, for example the p-type, and a surface layer (3) of the opposite conductivity type, for example the n-type for an n-channel transistor. To prevent formation of inversion layers below the gate, the channel is subdivided into a plurality of sub-channel regions (7a, 7b, 7c, 7d) mutually separated by p-type regions (11a, 11b, 11c, 11d) which serve to remove generated holes. The p-type regions extend across the whole thickness of the channel and are contacted via the substrate. Each sub-channel region may be subdivided further by intermediate p-type regions (13) to improve the removal of holes.
Abstract:
Various appliances linked up by a bus that can transmit video data form the system, and functionality modules themselves connected to the bus form certain appliances. A command enables to select functionality modules in various appliances at a time, to command the switch-on of these modules and to establish exchanges of data between these modules. A substantially virtual appliance may thus be formed by the combination of functionality modules that are found in separate appliances.