Abstract:
According to an embodiment of the present specification, a method for transmitting uplink data in a machine type communication (MTC) device is provided. The method may comprise the steps of: initially transmitting repetitive bundles of physical uplink shared channel (PUSCH) data including identical uplink data in a plurality of uplink subframes to a base station; receiving a hybrid automatic repeat request (HARQ) response signal with respect to the repetitive bundles of PUSCH; if the HARQ response signal is a negative-acknowledgement (NACK), determining the number of repetitions of the PUSCH including identical uplink data; and re-transmitting the PUSCH bundles repeatedly for the determined number of times on the plurality of uplink subframes to the base station.
Abstract:
The present invention relates to a wireless communication system. Specifically, the present invention relates to a method and an apparatus for a terminal to monitor a radio link in a wireless communication system, the method comprising: a step for receiving a radio frame including a plurality of subframes; a step for generating measurement results on the basis of the signal in the radio frame; and a step for evaluating the state of the radio link of the radio frame by comparing the measurement results with one or more threshold values, wherein if a repetition is applied to a physical downlink control channel (PDCCH) transmission, the measurement results are generated on the basis of the combined signal in L (L>1) subframes, and if the repetition is not applied to the PDCCH transmission, the measurement results are generated on the basis of the signal in a single subframe.
Abstract:
A method of sizing bundled resource blocks (RBs) having at least one user equipment (UE)-specific demodulation reference signal in an orthogonal frequency division multiplexing (OFDM) system is disclosed. According to one embodiment, the method includes: receiving configuration information related to at least one UE-specific demodulation reference signal; receiving a plurality of resource blocks (RBs) from a network, wherein the plurality of resource blocks comprises the at least one UE-specific demodulation reference signal, at least one cell-specific demodulation reference signal or data, wherein a number of the plurality of RBs is dependent on a size of a system bandwidth , the size of the system bandwidth corresponding to one of four size ranges; and processing at least one of the received plurality of RBs by bundling the plurality of RBs into RB bundles, wherein the size of each RB bundle is based on the one of the four size ranges.
Abstract:
The present invention provides a method for transmitting uplink control information (UCI) in a wireless access system supporting a multi-connection mode for a terminal to be connected to at least two small cells, and an apparatus therefor. In a wireless access system supporting a multi-connection mode, a method for enabling a terminal to transmit a confirmation response signal (ACK/NACK) according to an embodiment of the present invention includes the steps of: receiving an upper layer signal containing resource allotment information representing an allotted resource region in order to transmit a confirmation response signal; receiving a first physical downlink sharing channel (PDSCH) signal from a first small cell; receiving a second PDSCH signal from a second small cell; and transmitting a single confirmation response signal for the first PDSCH signal and the second PDSCH signal through the resource region represented by the resource allotment information. Here, the terminal maintains a plurality of connections with two or more small cells in the multi-connection mode, and the resource region may be allotted for the same time and frequency resource in both the first small cell and the second small cell.
Abstract:
Disclosed are a method and an apparatus for transmitting a reference signal. A method for receiving a reference signal may comprise the steps of: a subframe including a plurality of resource blocks (RB) and a plurality of OFDM symbols receiving a synchronization signal; and determining the number of RBs which are included in one precoding resource block group (PRB), on the basis of the size of a total system bandwidth, wherein the RBs included in the PRG may include information to which identical precoding has been applied. The synchronization signal is received by six core RBs from the plurality of RBs, and the reference signal can be received by at least one OFDM symbol from the plurality of OFDM symbols, excluding the first and second OFDM symbols, through a plurality of PRGs including the six core RBs. As a result, a channel can be accurately estimated on the basis of the reference signal.
Abstract:
The present invention provides methods for transmitting a scheduling request (SR) in a wireless access system supporting a multiple connection mode, in which a terminal is connected to two or more small cells, and apparatuses supporting the same. According to one embodiment of the present invention, a method for transmitting an SR, by a terminal, in a wireless access system supporting a multiple connection mode comprises the steps of: receiving an upper layer signal including an SR parameter for SR transmission from a first small cell which is in a multiple connection mode state; generating an SR on the basis of the SR parameter; and transmitting the SR using a physical uplink control channel (PUCCH) signal. Herein, the SR parameter is pre-set by negotiation between the first small cell and a second small cell which is in a multiple connection mode. Furthermore, in the multiple connection mode, the terminal maintains multiple connections with two or more small cells including the first small cell and the second small cell, and the first small cell and the second small cell may be connected to each other via a non-ideal backhaul link.
Abstract:
Provided are a communication method of a terminal in a wireless communication system and the terminal using the method. The method comprises: receiving a cell state signal from a small cell; and communicating with the small cell on the basis of the cell state signal, wherein the cell state signal includes information indicating the switching of the small cell to an off-state.
Abstract:
The present invention relates to a method for a base station transmitting a precoded signal to user equipment in a wireless communication system supporting a multi-antenna. More specifically, precoding is conducted by using a precoding matrix to which large delay-cyclic delay diversity (LD-CDD) is applied, wherein the precoding matrix is determined by dividing into matrices for a horizontal direction antenna and a perpendicular direction antenna.
Abstract:
A method of sizing bundled resource blocks (RBs) having at least one user equipment (UE)-specific demodulation reference signal in an orthogonal frequency division multiplexing (OFDM) system is disclosed. According to one embodiment, the method includes: receiving configuration information related to at least one UE-specific demodulation reference signal; receiving a plurality of resource blocks (RBs) from a network, wherein the plurality of resource blocks comprises the at least one UE-specific demodulation reference signal, at least one cell-specific demodulation reference signal or data, wherein a number of the plurality of RBs is dependent on a size of a system bandwidth, the size of the system bandwidth corresponding to one of four size ranges; and processing at least one of the received plurality of RBs by bundling the plurality of RBs into RB bundles, wherein the size of each RB bundle is based on the one of the four size ranges.
Abstract:
A method for transmitting an uplink signal at a User Equipment (UE) in a wireless communication system includes receiving, from a Base Station (BS), an uplink scheduling grant for multi-antenna transmission; transmitting the uplink signal precoded using precoding information included in the received uplink scheduling grant to the BS; and retransmitting the uplink signal to the BS according to Acknowledgment/Negative Acknowledgment (ACK/NACK) corresponding to the transmitted uplink signal. The retransmitted uplink signal is precoded using precoding information included in a most recent uplink scheduling grant or a predetermined precoding matrix if an uplink scheduling grant for the retransmission is not received from the BS.