Abstract:
A method of disclosing transaction information to customers includes receiving at a host computer system a file comprising processing information. The processing information comprises a plurality of transaction categories and fee information associated with each transaction category. The method also includes receiving a message from a point-of-sale device requesting the fee information associated with at least one particular transaction category relating to a transaction with a customer and sending from the host computer system an electronic message comprising the fee information. The method further comprises displaying transaction information relating to the electronic message at the point-of-sale device and providing the customer the opportunity to cancel the transaction. The transaction may involve an exchange between at least two different forms of value.
Abstract:
The invention concerns novel hybrid pesticidal toxins. These toxins are expressed as the fusion protein of a chimeric gene. Specifically exemplified is a novel B.t. hybrid toxin. These novel toxins have increased toxicity against target pests. The invention also concerns a process for preparing a hybrid virus having an altered insect host range.
Abstract:
The subject invention concerns materials and methods useful in the control of pests and, particularly, plant pests. More specifically, the subject invention concerns novel genes and pesticidal toxins referred to as 86A1(b) and 52A1(b). In preferred embodiments, the subject toxins are used for controlling flea beetles of the genus Phyllotreta. Using the genes described herein, the transformation of plants can be accomplished using techniques known to those skilled in the art. In addition, the subject invention provides toxin genes optimized for expression in plants.
Abstract:
A circuit protection device which comprises first and second laminar electrodes; a laminar PTC conductive polymer resistive element sandwiched between the electrodes; a third laminar conductive member which is secured to the same face of the PTC element as the second electrode but is separated therefrom; and an electrical connector which connects the third conductive member and the first electrode. This permits connection to both electrodes from the same side of the device, so that the device can be connected flat on a printed circuit board, with the first electrode on top, without any need for leads. The connector is preferably a cross-conductor which passes through an aperture in the PTC element, because this makes it possible to carry out the steps for preparing the devices on an assembly which corresponds to a number of individual devices, with division of the assembly as the final step.
Abstract:
Bacillus thuringiensis endotoxin expression in Pseudomonads can be improved by modifying the gene encoding the Bacillus thuringiensis endotoxin. Chimeric genes are created by replacing the segment of the Bacillus thuringiensis gene encoding a native protoxin with a segment encoding a different protoxin. Exemplified herein is the cryIF/cryI(b) chimera wherein the native cryIF protoxin segment has been substituted by the cryIA(b) protoxin segment, to yield improved expression of the cryIF toxin in Pseudomonads. The invention also concerns novel genes and plasmids.
Abstract:
Bacillus thuringiensis endotoxin expression in Pseudomonads can be improved by modifying the gene encoding the Bacillus thuringiensis endotoxin. Chimeric genes are created by replacing the segment of the Bacillus thuringiensis gene encoding a native protoxin with a segment encoding a different protoxin. Exemplified herein is the cryIF/cryI(b) chimera wherein the native cryIF protoxin segment has been substituted by the cryIA(b) protoxin segment, to yield improved expression of the cryIF toxin in Pseudomonads. The invention also concerns novel genes and plasmids.
Abstract:
A novel B.t. isolate with activity against lepidopteran insects is disclosed. This isolate is highly active agaist the beet armyworm. A gene from this isolate has been cloned. The DNA encoding the B.t. toxin can be used to transform various prokaryotic and eukaryotic microbes to express the B.t. toxin. These recombinant microbes can be used to control lepidopteran insects in various environments.
Abstract:
A cleaning device includes a cartridge assembly, a hose/tubing, a nozzle, and an activator. The cartridge assembly includes at least one cartridge configured to hold a liquid solution. An attachment device is coupled to the cartridge assembly and is configured to secure the position of the cartridge assembly to a user's arm adjacent the hand. A pump is located within the cleaning device and is located between cartridge and the nozzle, such that pump regulates dispensing of the liquid solution. The nozzle is in communication with the pump and acts as a diffuser to adjust the stream of the liquid solution passed through the hose from pump. The activator is in communication with the pump such that operation of the activator selectively releases a volume of the liquid solution from the cartridge so as to pass through the nozzle. A control unit and interface are permitted.
Abstract:
A method of surgical dissection of tissue with a dissector comprising: an elongate shaft comprising a proximal portion and a distal portion, wherein the distal portion comprises a plurality of segments that articulate with respect to one another and the plurality of segments includes a distal segment having a distal end; and a handle attached to the proximal portion of the shaft, wherein the handle comprises controls for articulating the plurality of segments of the distal portion of the shaft with respect to one another, comprising the steps of: positioning the distal end of the dissector in a body; advancing the distal end through the body to dissect tissue; and simultaneously articulating the plurality of segments with respect to one another. A method of surgical dissection of tissue and guiding a second device to a desired physiological location with a first device.
Abstract:
An electrical socket (1) comprising a carriage (4), the carriage comprising shutter portions, each shutter portion associated with a respective pin receiving opening (5a, 5b, 5c, 5d, 5e), and the socket comprising a retainer arrangement, and the shutter portions (4a, 4b), when in a closed condition are inhibited from moving to an open condition by the retainer arrangement, and wherein all the shutter portions are required to be in a released condition from the retainer arrangement in order to allow the shutter portions to be moved to an open condition to allow the plug pins to be inserted therein, and also wherein, if not all of the shutter portions are moved to a released condition, the shutter portions are inhibited from movement to the open condition by way of engagement with the retainer arrangement.