Semiconductor device including outwardly extending source and drain silicide contact regions and related methods
    181.
    发明授权
    Semiconductor device including outwardly extending source and drain silicide contact regions and related methods 有权
    半导体器件包括向外延伸的源极和漏极硅化物接触区域以及相关方法

    公开(公告)号:US08878300B1

    公开(公告)日:2014-11-04

    申请号:US14030048

    申请日:2013-09-18

    CPC classification number: H01L29/785 H01L29/41791 H01L29/66795

    Abstract: A method for making a semiconductor device may include forming a plurality of semiconductor fins on a substrate, forming a gate overlying the plurality of semiconductor fins, forming respective unmerged semiconductor regions on the semiconductor fins on opposing sides of the gate, and forming a dielectric layer overlying the unmerged semiconductor regions. The method may further include etching the dielectric layer to define contact recesses having recess bottoms exposing the unmerged semiconductor regions, forming a respective semiconductor layer on each of the exposed unmerged semiconductor regions to extend outwardly from adjacent portions of the recess bottom, and siliciding each of the semiconductor layers to define respective source and drain contacts extending outwardly from adjacent portions of the recess bottom.

    Abstract translation: 制造半导体器件的方法可以包括在衬底上形成多个半导体鳍片,形成覆盖多个半导体鳍片的栅极,在栅极的相对侧上的半导体鳍片上形成相应的未掺杂半导体区域,并形成介电层 覆盖未加工的半导体区域。 该方法可以进一步包括蚀刻电介质层以限定具有暴露未掺杂半导体区域的凹陷底部的接触凹部,在每个暴露的非半导体区域上形成相应的半导体层,以从凹部底部的相邻部分向外延伸, 所述半导体层限定相应的源极和漏极触点,其从所述凹部底部的相邻部分向外延伸。

    MEMORY DEVICE HAVING MULTIPLE DIELECTRIC GATE STACKS AND RELATED METHODS
    183.
    发明申请
    MEMORY DEVICE HAVING MULTIPLE DIELECTRIC GATE STACKS AND RELATED METHODS 有权
    具有多个介电栅堆叠的存储器件及相关方法

    公开(公告)号:US20140291749A1

    公开(公告)日:2014-10-02

    申请号:US13852645

    申请日:2013-03-28

    Abstract: A memory device may include a semiconductor substrate, and a memory transistor in the semiconductor substrate. The memory transistor may include source and drain regions in the semiconductor substrate and a channel region therebetween, and a gate stack. The gate stack may include a first dielectric layer over the channel region, a first diffusion barrier layer over the first dielectric layer, a first electrically conductive layer over the first diffusion barrier layer, a second dielectric layer over the first electrically conductive layer, a second diffusion barrier layer over the second dielectric layer, and a second electrically conductive layer over the second diffusion barrier layer. The first and second dielectric layers may include different dielectric materials, and the first diffusion barrier layer may be thinner than the second diffusion barrier layer.

    Abstract translation: 存储器件可以包括半导体衬底和半导体衬底中的存储晶体管。 存储晶体管可以包括半导体衬底中的源极和漏极区域以及它们之间的沟道区域和栅极堆叠。 栅极堆叠可以包括沟道区域上的第一介电层,第一介电层上的第一扩散阻挡层,第一扩散阻挡层上的第一导电层,第一导电层上的第二介电层,第二介电层 第二介电层上的扩散阻挡层,以及位于第二扩散阻挡层上的第二导电层。 第一和第二电介质层可以包括不同的电介质材料,并且第一扩散阻挡层可以比第二扩散阻挡层薄。

    Semi-floating gate FET
    185.
    发明授权

    公开(公告)号:US10741698B2

    公开(公告)日:2020-08-11

    申请号:US16355398

    申请日:2019-03-15

    Abstract: A semi-floating gate transistor is implemented as a vertical FET built on a silicon substrate, wherein the source, drain, and channel are vertically aligned, on top of one another. Current flow between the source and the drain is influenced by a control gate and a semi-floating gate. Front side contacts can be made to each one of the source, drain, and control gate terminals of the vertical semi-floating gate transistor. The vertical semi-floating gate FET further includes a vertical tunneling FET and a vertical diode. Fabrication of the vertical semi-floating gate FET is compatible with conventional CMOS manufacturing processes, including a replacement metal gate process. Low-power operation allows the vertical semi-floating gate FET to provide a high current density compared with conventional planar devices.

    Integrated cantilever switch
    186.
    发明授权

    公开(公告)号:US10411140B2

    公开(公告)日:2019-09-10

    申请号:US15892028

    申请日:2018-02-08

    Abstract: An integrated transistor in the form of a nanoscale electromechanical switch eliminates CMOS current leakage and increases switching speed. The nanoscale electromechanical switch features a semiconducting cantilever that extends from a portion of the substrate into a cavity. The cantilever flexes in response to a voltage applied to the transistor gate thus forming a conducting channel underneath the gate. When the device is off, the cantilever returns to its resting position. Such motion of the cantilever breaks the circuit, restoring a void underneath the gate that blocks current flow, thus solving the problem of leakage. Fabrication of the nano-electromechanical switch is compatible with existing CMOS transistor fabrication processes. By doping the cantilever and using a back bias and a metallic cantilever tip, sensitivity of the switch can be further improved. A footprint of the nano-electromechanical switch can be as small as 0.1×0.1 μm2.

Patent Agency Ranking