Multi-metal fill with self-align patterning

    公开(公告)号:US10784155B2

    公开(公告)日:2020-09-22

    申请号:US16657485

    申请日:2019-10-18

    Abstract: The present disclosure describes methods which employ a patterning photolithography/etch operations to form self-aligned interconnects with multi-metal gap fill. For example, the method includes a first pattern structure and a second pattern structure formed over a dielectric layer. Each of the first and second pattern structures includes a pair of spacers, and a center portion between the pair of spacers. A first opening, self-aligned to a space between the first and second pattern structures, is formed in the dielectric layer. A first conductive material is deposited in the first opening. The center portion of the second pattern structure is removed to form a void above the dielectric layer and between the pair of spacers of the second pattern structure. A second opening, self-aligned to the void, is formed in the dielectric layer; and a second conductive material is deposited in the second opening.

    Multi-Metal Fill with Self-Align Patterning
    185.
    发明申请

    公开(公告)号:US20200051853A1

    公开(公告)日:2020-02-13

    申请号:US16657485

    申请日:2019-10-18

    Abstract: The present disclosure describes methods which employ a patterning photolithography/etch operations to form self-aligned interconnects with multi-metal gap fill. For example, the method includes a first pattern structure and a second pattern structure formed over a dielectric layer. Each of the first and second pattern structures includes a pair of spacers, and a center portion between the pair of spacers. A first opening, self-aligned to a space between the first and second pattern structures, is formed in the dielectric layer. A first conductive material is deposited in the first opening. The center portion of the second pattern structure is removed to form a void above the dielectric layer and between the pair of spacers of the second pattern structure. A second opening, self-aligned to the void, is formed in the dielectric layer; and a second conductive material is deposited in the second opening.

    Integrated Circuit Interconnect Structures with Air Gaps

    公开(公告)号:US20200006228A1

    公开(公告)日:2020-01-02

    申请号:US16380386

    申请日:2019-04-10

    Abstract: Examples of an integrated circuit with an interconnect structure and a method for forming the integrated circuit are provided herein. In some examples, the method includes receiving a workpiece having an interconnect structure that includes a first conductive feature, a second conductive feature disposed beside the first conductive feature, and an inter-level dielectric disposed between the first conductive feature and the second conductive feature. A conductive material of an etch stop layer is selectively deposited on the first conductive feature and on the second conductive feature without depositing the conductive material on the inter-level dielectric, and the inter-level dielectric is removed to form a gap between the first conductive feature and the second conductive feature.

    Multi-metal fill with self-align patterning

    公开(公告)号:US10483159B2

    公开(公告)日:2019-11-19

    申请号:US16010007

    申请日:2018-06-15

    Abstract: The present disclosure describes methods which employ a patterning photolithography/etch operations to form self-aligned interconnects with multi-metal gap fill. For example, the method includes a first pattern structure and a second pattern structure formed over a dielectric layer. Each of the first and second pattern structures includes a pair of spacers, and a center portion between the pair of spacers. A first opening, self-aligned to a space between the first and second pattern structures, is formed in the dielectric layer. A first conductive material is deposited in the first opening. The center portion of the second pattern structure is removed to form a void above the dielectric layer and between the pair of spacers of the second pattern structure. A second opening, self-aligned to the void, is formed in the dielectric layer; and a second conductive material is deposited in the second opening.

    Hybrid copper structure for advance interconnect usage

    公开(公告)号:US10290580B2

    公开(公告)日:2019-05-14

    申请号:US15819280

    申请日:2017-11-21

    Abstract: The present disclosure, in some embodiments, relates to an integrated chip having a back-end-of-the-line interconnect stack. The integrated chip has a dielectric structure arranged over a substrate. A first interconnect structure is arranged within the dielectric structure and has sidewalls and a horizontally extending surface that define a recess within a lower surface of the first interconnect structure facing the substrate. A lower interconnect structure is arranged within the dielectric structure and extends from within the recess to a location between the first interconnect structure and the substrate. The first interconnect structure and the lower interconnect structure comprise one or more different conductive materials.

    Structure and formation method of semiconductor device structure

    公开(公告)号:US10103102B2

    公开(公告)日:2018-10-16

    申请号:US15855795

    申请日:2017-12-27

    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a dielectric layer over a semiconductor substrate. The semiconductor device structure also includes a first conductive feature in the dielectric layer. A portion of the dielectric layer has a top surface that is provided on a different level in relation to a top surface of the first conductive feature. The semiconductor device structure further includes a second conductive feature in the dielectric layer and extending from a bottom surface of the first conductive feature. The portion of the dielectric layer is separated from the second conductive feature by a gap. A distance between the portion of the dielectric layer and the second conductive feature becomes smaller along a direction from the top surface of the first conductive feature towards the bottom surface of the first conductive feature.

Patent Agency Ranking