Abstract:
Process for the bleaching of paper pulp in which an aqueous suspension of paper pulp is subjected to a bleaching treatment with hydrogen peroxide in the presence of magnesium hydroxide and of at least one poly-α-hydroxyacrylic acid, its salt or their mixture.
Abstract:
The invention provides laccases, polynucleotides encoding these enzymes, the use of such polynucleotides and polypeptides. In one aspect, the invention relates to the enzymatic production of nootkatone by way of the conversion of valencene using proteins having a laccase activity, e.g., a novel laccase of the invention. In one aspect, the invention provides methods of depolymerizing lignin, e.g., in a pulp or paper manufacturing process, using a polypeptide of the invention. In another aspect, the invention provides methods for oxidizing products that can be mediators of laccase-catalyzed oxidation reactions, e.g., 2,2-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS), 1-hydroxybenzotriazole (HBT), 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO), dimethoxyphenol, and the like.
Abstract:
A method for the determination of a cellulosic-fibre property, namely, residual lignin content or Kappa number of chemical pulp, with the aid of a spectroscopic technique obtained over a range covering the visible and the near-infrared regions of the electromagnetic spectrum, comprising exposing the wet fibres to a light source covering a range in the visible region of 350 nm to 750 nm and a range in the near-infrared of 1100 nm to 2400 nm, reflecting light from the wet fibres, establishing a spectrum, comparing the spectrum with a known spectrum of the property and evaluating the comparison; the method has particular utility in a pulp manufacture line; an apparatus is described for carrying out the method.
Abstract:
A process for improving optical properties of high-yield pulp (HYP) for producing paper products with superior brightness. Optical brightening agents (OBAs) can effectively improve the optical properties of high-yield pulp (HYP). The present process involves incorporating the OBAs into the alkaline peroxide bleaching process. By combining peroxide bleaching with an optical brightening agent, one can decrease the bleaching cost to reach the same brightness target. Some key advantages of adding OBA to HYP at the pulp mill over the conventional wet-end addition of OBA include: i) the quenching effect on OBA by the wet-end cationic polymers such as PEI is decreased by fixing OBA on HYP fibers; ii) the negative impact of metal ions in the white water system on the OBA performance is minimized when OBA is pre-adsorbed and fixed on HYP fibers; iii) the photo-yellowing (color reversion) of HYP and HYP-containing paper sheets is decreased when more OBA is on HYP fibers to protect them from harmful UV radiation.
Abstract:
Final chlorine dioxide bleaching of lignocellulosic materials is most effective at a near-neutral pH but present industrial practice typically targets a final pH of between 3.5 and 4.0 because of the difficulty in achieving and maintaining near-neutral pH cost effectively. The in situ formation of bicarbonate before the addition of chlorine dioxide provides a way of maintaining the required near-neutral pH. Near-neutral final chlorine dioxide bleaching also produces a bleached pulp that is in a state that responds more effectively to fluorescent whitening or optical brightening agents.
Abstract:
The present invention relates to a process for oxidising a hydroxyl group to form an aldehyde and/or carboxy group, the process comprising the step of reacting a substrate comprising at least one primary hydroxy group with a nitrosonium ion in the presence of an oxidase and hydrogen peroxide.
Abstract:
The invention relates to methods for oxidizing (redox reactions, preferably pulp delignification/bleaching), for carrying out coupling reactions (grafting polymer materials) or for carrying out cross-linking reactions on natural (i.e. having natural origin) or artificial (i.e. synthetically produced polymers) monomers to polymers or of mixtures of natural and artificial polymers or of fibre materials, of lignocellulose-containing, cellulose-containing or protein-like natural polymers or fibre materials such as pulp, textiles like cotton and wool. The invention is characterized in that 1) these oxidation, coupling or cross-linking reactions are carrying out using hydrolases such as lipases, esterases, proteases, amidases, transferases, acylases, glycosidases or glycotransferases or oxidoreductases, such as preferably peroxidases, chloroperoxidases and laccases, either individually or in combination with one another; and 2) that these reactions ( oxidation, coupling or cross-linking reactions) are carrying out with the above mentioned substances and/or with property-changing substances such as monomer to polymer substances (natural or synthetic) either simultaneously or one after the other using specific enzyme-activated enhancer substances and/or coupling substances.
Abstract:
The invention provides laccases, polynucleotides encoding these enzymes, the use of such polynucleotides and polypeptides. In one aspect, the invention relates to the enzymatic production of nootkatone by way of the conversion of valencene using proteins having a laccase activity, e.g., a novel laccase of the invention. In one aspect, the invention provides methods of depolymerizing lignin, e.g., in a pulp or paper manufacturing process, using a polypeptide of the invention. In another aspect, the invention provides methods for oxidizing products that can be mediators of laccase-catalyzed oxidation reactions, e.g., 2,2-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS), 1-hydroxybenzotriazole (HBT), 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO), dimethoxyphenol, and the like.
Abstract:
It is intended to provide means of efficiently, economically and conveniently dyeing fibers or hair, bleaching pulp or fibers, removing phenol compounds from liquid wastes, degrading endocrine disruptors, producing phenolic resins, producing artificial lacquer coatings, improving wood qualities, etc. A culture of a strain belonging to the genus Flammulina; a culture originating in the above strain which is obtained by culturing the strain at a pH value exceeding 7 and has a phenol oxidase-like activity; a process for producing the culture; a dyeing method which comprises contacting a subject to be dyed with a dye in the presence of the above culture; and a dyeing composition containing the above culture.