Abstract:
An upwardly acting sectional door system including, a door (D) having a plurality of hinged door sections (16-18) movable between a closed vertical position and an open horizontal position, a drive tube (31) mounted above the door in the closed vertical position, an operator (11) selectively directionally rotatably driving the drive tube, cable drums (35) mounted on the drive tube for rotation therewith by the operator, springs (60) mounted in operative relation to the cable drums, and counterbalance cables (75) reeved about the cable drums and interconnecting the springs and the door to counterbalance the door when moving between the closed vertical position and the open horizontal position.
Abstract:
An upwardly acting sectional door system including, a door (D) having a plurality of hinged door sections (16-18) movable between a closed vertical position and an open horizontal position, a drive tube (31) mounted above the door in the closed vertical position, an operator (11) selectively directionally rotatably driving the drive tube, cable drums (35) mounted on the drive tube for rotation therewith by the operator, springs (60) mounted in operative relation to the cable drums, and counterbalance cables (75) reeved about the cable drums and interconnecting the springs and the door to counterbalance the door when moving between the closed vertical position and the open horizontal position.
Abstract:
An assembly including a first, second, and third component, the first component being secured to the second component by a deformed portion to provide a subassembly, in which the deformed portion is utilized to releaseably secure the third component to the sub assembly via a fourth component.
Abstract:
A control method of a powered sliding device having a wire drum coupled through a wire cable with a sliding door slidably attached to a vehicle body, a motor for rotating the wire drum by the electric power from a battery, a voltmeter for measuring the battery voltage of the battery, and a sensor for detecting the sliding speed of the sliding door, comprises the steps of: measuring the sliding speed SS by the sensor when a predetermined time has elapsed from an actuation of the motor; comparing the measured sliding speed SS with the lower limited speed LLS of the sliding door determined according to the degree of the battery voltage BV measured by the voltmeter; and stopping or reversing the motor when the sliding speed SS is slower than the lower limited speed LLS.
Abstract:
A driving motor (1) for an actuating drive having improved jamming protection of a closing part, e.g., a window pane (2) of a motor vehicle. The closing part is adjusted via a transmission, e.g., a cable drive drum (3, 4). To avoid over-dimensioning of the driving motor (1), a variable transmission is provided that delivers a substantially constant load on the driving motor (1) over the entire adjustment path of the window pane (2). Thereby, a design of the driving motor (1) to cope with an increased load, which would otherwise be caused when the closing part slides into a closed position, is avoided. In addition, since the closing part approaches the closed position with a lower speed, the closing part is able to brake rapidly, if necessary. This results, e.g., in an improved jamming protection function of the closing part.
Abstract:
The present powered sliding device comprises a wire drum, a motor for rotating the drum, and a clutch means provided between the drum and the motor. The clutch means has a coupled state for rotating the drum, an uncoupled state, and a brake state. The clutch means is displaced from the coupled state to the brake state when the wire drum is rotated at an over speed. The clutch means in the brake state transmits the over speed rotation of the wire drum to the motor.
Abstract:
A vehicle power liftgate cable drive has a cable drive housing. An electric motor with a motor housing and an output shaft is secured to the cable drive housing. A clutch pack with a first clutch driven by the output shaft and a second clutch driven by the first clutch, is mounted in the cable drive housing. One of the clutches in the clutch pack is a one way clutch and the other clutch is an electromagnetic clutch. A pinion gear is driven by the second clutch. An output gear is rotatably journaled on a fixed shaft and driven by the pinion gear. The cable drum is attached to the output gear. A coil spring has one end fixed to the fixed shaft and its other end attached to the cable drum. The fixed shaft is rotated to preload the coil spring in a direction that tends to wind a cable on the cable drum and then the fixed shaft is fastened to the cable drive housing. A cable is attached to the cable drum and to the liftgate. A solenoid plunger cooperates with the output gear to stop the liftgate in an intermediate position.
Abstract:
A door closing device including closing means for urging a door between said first open position and second closed position having a cable mounted in a housing said cable wound about periphery of a reel regulating the speed of movement of said door between the open position and closed position; a reservoir for containing viscous fluid; and a buffer for retarding the speed of movement of said door comprising an impeller immersed in the viscous fluid for use as a brake; whereby the impeller reduces rotational speed of said reel, thus reducing closing speed of said door.
Abstract:
A powered sliding-door system of an automobile with a sliding-door drive device A and an automatic door closer B. The sliding-door drive device A has a box-like case body 1 opening downward, a case cover 2 covering the opening of the case body 1. A pair of guide pulleys are rotatably supported by axes, and each axis stands on the front end and the rear end of the case in slanting posture. A loop of cable is arranged between the pair of guide pulleys so that a working side is arranged outside of the case body and a return side is arranged in the case body. The loop of cable is driven by an motor driven actuator 12.
Abstract:
A packing mounting structure for a vehicle door powered sliding device comprises an elongated guide rail fixed to a side panel of a vehicle body, a sliding door mounted on the body, a powered sliding unit arranged on an interior side of the side panel, a wire cable provided between the sliding door and the powered sliding unit, a pulley holder provided in the vicinity of one end of the guide rail and having a first pulley around which the cable wire is set, a cable hole formed on the side panel in the vicinity of the one end of the guide rail for passing the wire cable through the side panel, a flexible packing member mounted in the cable hole to close a gap between the cable hole and the wire cable. The pulley holder is fixed to the side panel by either of a screw or bolt. The packing member has an inserting portion which is inserted into the cable hole, and a large-diameter portion which has a diameter sufficiently larger than that of the cable hole and abuts on an inside surface of the side panel when the inserting portion is inserted into the cable hole. The large-diameter portion is firmly sandwiched between the pulley holder and the side panel.