-
公开(公告)号:US11951487B2
公开(公告)日:2024-04-09
申请号:US17285627
申请日:2020-05-09
Applicant: QINGDAO UNIVERSITY OF TECHNOLOGY , RESEARCH INSTITUTE OF AGRICULTURAL MECHANIZATION XINJIANG ACADEMY OF AGRICULTURAL SCIENCES , XINJIANG JIANG NING LIGHT INDUSTRIAL MACHINERY ENGINEERING TECHNOLOGY CO., LTD.
Inventor: Changhe Li , Mingzheng Liu , Xiaoming Wang , Huimin Yang , Xinping Li , Xiangdong Liu , Tuluhon Turdi , Ji Che , Lianxing Gao , Huayang Zhao , Xiaowei Zhang , Yanbin Zhang , Yifei Chen , Yali Hou
CPC classification number: B02C23/38 , B02C19/005 , B02C21/00 , B02C23/02 , B02C23/30
Abstract: The present invention discloses a same-cavity integrated vertical high-speed multistage superfine pulverizing device and method for walnut shells. The same-cavity integrated vertical high-speed multistage superfine pulverizing device for walnut shells includes a double-channel sliding type feeding device and a same-cavity integrated vertical pulverizing device. The same-cavity integrated vertical pulverizing device includes a material lifting disc and a same-cavity integrated vertical pulverizing barrel. A first-stage coarse crushing region, a second-stage fine crushing region, a third-stage pneumatic impact micro pulverizing region and a fourth-stage airflow mill superfine pulverizing region are disposed in the same-cavity integrated vertical pulverizing barrel. Walnut shells falling through the double-channel sliding type feeding device are uniformly lifted by the material lifting disc to a wedge-shaped gap of the first-stage coarse crushing region to be coarsely crushed, and coarsely crushed materials are finely crushed by the second-stage fine crushing region through a two-stage wedge-shaped direct-through gradually reducing gap. The third-stage pneumatic impact micro pulverizing region performs high-speed collision on finely crushed walnut shell particles, and walnut shell fine particles are carried by a high-speed airflow and are collided and violently rubbed to be pulverized. The microparticle grading is realized by the fourth-stage airflow mill superfine pulverizing region by using arc-shaped blades, and microparticles conforming to a particle size condition are attracted out through negative pressure attraction.
-
公开(公告)号:US20240110479A1
公开(公告)日:2024-04-04
申请号:US18172775
申请日:2023-02-22
Applicant: Qingdao University of Technology
Inventor: Yongjun ZHANG , Fei LIU , Sijia LIU , Junyi WANG , Bin GONG , Yingming WU , Ruiquan LU , Qingsong WANG , Qinghui XU , Xiaoming GUAN , Mingdong YAN , Xiangyang NI , Pingan WANG , Shuguang LI , Lin YANG , Ning NAN , Dengfeng YANG
IPC: E21F17/18
Abstract: The present disclosure provides a multi-factor quantitative analysis method for deformation of a neighborhood tunnel. The method includes the following steps: analyzing monitoring data generated at a tunnel site; simulating collapse occurring at a shallow buried section of a tunnel; determining the degree of influence of each factor on the tunnel and a stratum; and determining quantitative influence of each factor on tunnel deformation. The present disclosure can not only provide an accurate theoretical basis for the construction of the shallow buried section of the small-distance tunnel, but also guarantee safety and cost saving during tunnel construction.
-
13.
公开(公告)号:US11898699B2
公开(公告)日:2024-02-13
申请号:US17279491
申请日:2020-02-06
Inventor: Changhe Li , Zhenjing Duan , Huajun Cao , Xuefeng Xu , Naiqing Zhang , Lan Dong , Yanbin Zhang , Xiufang Bai , Wentao Wu , Teng Gao , Min Yang , Dongzhou Jia , Runze Li , Yali Hou
CPC classification number: F16N7/32 , B23Q11/1046 , B23Q11/1069 , B24B55/12 , B01D45/16 , B01D46/0031 , B01D50/20 , B01D2273/30 , F01M2013/0438 , F16C33/6662
Abstract: An oil mist recovery, separation and purification device for a minimum quantity lubricant (MQL) grinding process, including: a pneumatic separation mechanism, a pipeline and a fan fixedly connected with one end of the pipeline, wherein the fan is configured to form a negative pressure in the pipeline, one cone-shaped filter mesh mechanism is disposed in the pipeline, and a tip of the cone-shaped filter mesh mechanism faces the side of an air inlet direction of the pipeline; and a filtering and recovery mechanism connected with the pipeline and including a case body, a filtering mechanism and a recovery mechanism, wherein the case body is connected with the pipeline through a connecting part, and the filtering mechanism is connected with the recovery mechanism. The device can separate, recover and reuse oil mist particles in the air.
-
公开(公告)号:US11819047B2
公开(公告)日:2023-11-21
申请号:US17279436
申请日:2020-02-06
Applicant: QINGDAO UNIVERSITY OF TECHNOLOGY , XINJIANG JIANG NING LIGHT INDUSTRIAL MACHINERY ENGINEERING TECHNOLOGY CO., LTD.
Inventor: Changhe Li , Mingzheng Liu , Yucheng Wang , Yanbin Zhang , Ji Che , Yali Hou , Xiaoming Wang , Yitian Feng , Rong Wang , Yiping Feng , Huaiyu Wang , Zhenming Jia , Lei Zhao , Guangzhen Miao , Runze Li , Teng Gao
IPC: A23N5/00
CPC classification number: A23N5/00
Abstract: A cam roller type horizontal extrusion cracking system for walnuts, including feeding, cracking and falling devices fixed accordingly on a stand. The feeding device includes a feeding box; an intermittent feeding roller is arranged therein; one side of the roller includes a feeding baffle plate, the other side includes an adjustable feeding scraper blade mechanism; and opposing feeding slots are formed in the roller. The cracking device includes an extrusion box body; movable and fixed tooth-shaped extrusion plates are oppositely mounted therein; one side of the movable plate opposite the fixed includes an extrusion cam; the plates have a plurality of tooth gaps; a walnut passes through the feeding device, falls into a gap between the plates; the cam drives the movable plate to do a periodic reciprocating motion, to synchronously cooperate with the fixed plate to perform extrusion cracking on the walnut.
-
15.
公开(公告)号:US20230358442A1
公开(公告)日:2023-11-09
申请号:US18354871
申请日:2023-07-19
Applicant: Qingdao University of Technology
Inventor: Sen LIANG , Ruijun SUN , Qinglun CHE , Long WU
CPC classification number: F24H9/14 , F24H9/0005 , F24H1/181
Abstract: A tooling and method for flexible through connection of a double-liner water heater. The tooling includes a transition shaft, a tooling connecting plate and a fastening screw. The method includes: allowing a shaft head of the transition shaft to be in fit with an inner surface of an outer flange of a lower liner for welding; allowing an end hole to be in fit with an outer surface of an inner flange of an upper liner for welding; after welding seams are cooled, removing the tooling, and enameling the upper and liners; forming through-flexible connection between the inner and outer flanges; and firmly fitting the upper and lower liners together with two steel strips to ensure that a gap between the upper and lower liners is not greater than 7 mm.
-
公开(公告)号:US11794297B2
公开(公告)日:2023-10-24
申请号:US17341326
申请日:2021-06-07
Applicant: QINGDAO UNIVERSITY OF TECHNOLOGY , SHANGHAI JINZHAO ENERGY SAVING TECHNOLOGY CO., LTD. , SHANXI JINZHAO AVIATION TECHNOLOGY CO., LTD.
Inventor: Changhe Li , Xifeng Wu , Yixue Han , Naiqing Zhang , Yanbin Zhang , Qidong Wu , Huajun Cao , Teng Gao , Min Yang , Bingheng Lu , Yuying Yang , Xin Cui , Xufeng Zhao , Mingzheng Liu , Dongzhou Jia , Xiaowei Zhang , Hao Ma
CPC classification number: B23Q11/10 , B23C5/28 , B23Q11/1015 , B23Q11/1046 , B23Q17/249
Abstract: The present disclosure provides an internal cooling/external cooling-switching milling minimum-quantity-lubrication intelligent nozzle system and method, relating to the field of milling lubrication. The system includes: a vision system, configured to acquire a real-time milling depth of a workpiece and send the real-time milling depth to a lubrication manner controller for processing; a lubrication system, including an internal cooling system and an external cooling system connected together to a cutting fluid supply source through a reversing device; and the lubrication manner controller, configured to communicate with the vision system and the lubrication system respectively, and control the reversing device to act according to a set milling depth threshold and data acquired by the vision system, so as to adjust and switch to the internal cooling system or the external cooling system to work. Milling depth data of a machine tool is collected, the milling depth data is transmitted to a control center for data analysis and processing, the data is compared with an initially set internal cooling/external cooling switching threshold to obtain the most suitable cooling and lubrication manner under current machining conditions of the machine tool, and the control center controls the internal cooling and external cooling systems according to the obtained result to realize intelligent switching of the cooling and lubrication manner between internal cooling and external cooling.
-
公开(公告)号:US11771126B2
公开(公告)日:2023-10-03
申请号:US16959607
申请日:2019-10-29
Applicant: QINGDAO UNIVERSITY OF TECHNOLOGY , XINJIANG JIANG NING LIGHT INDUSTRIAL MACHINERY ENGINEERING TECHNOLOGY CO., LTD.
Inventor: Changhe Li , Mingcun Shi , Yiping Feng , Yitian Feng , Zhenming Jia , Leilei Zhao , Rong Wang , Yucheng Wang , Yanbin Zhang , Ji Che , Runze Li , Cai Wang , Min Yang , Yali Hou
Abstract: The present invention discloses a multi-station adaptive walnut shell pre-breaking system, comprising a feeding device and a shell pre-breaking device. The feeding device comprises a feeding box, a single-helix twister and a double-helix twister are disposed in the feeding box, the single-helix twister and the double-helix twister rotate in opposite directions, and an adjustable spring partition is disposed below the single-helix twister and the double-helix twister; the shell pre-breaking device comprises a shell pre-breaking box, a plurality of squeezing stations are provided in the shell pre-breaking box, each of the squeezing stations is provided with a shell pre-breaking assembly, the shell pre-breaking assembly comprises a falling U-shaped plate and a squeezing U-shaped plate, a first end of the falling U-shaped plate is hinged to the shell pre-breaking box, a second end of the falling U-shaped plate is pushed to move by a falling cam, the end of the squeezing U-shaped plate opposite to the first end of the falling U-shaped plate is pushed to move by a squeezing cam, the end of the squeezing U-shaped plate opposite to the second end of the falling U-shaped plate is hinged to the shell pre-breaking box, the squeezing cam is in an outer dwell state when the falling cam moves, and the falling cam is in an outer dwell state when the squeezing cam moves.
-
公开(公告)号:US11766753B2
公开(公告)日:2023-09-26
申请号:US17468668
申请日:2021-09-07
Applicant: QINGDAO UNIVERSITY OF TECHNOLOGY , CHONGQING UNIVERSITY , SHANGHAI JINZHAO ENERGY SAVING TECHNOLOGY CO., LTD
Inventor: Changhe Li , Qingan Yin , Yanbin Zhang , Huajun Cao , Zhenjing Duan , Cong Mao , Wenfeng Ding , Naiqing Zhang , Lan Dong , Xiufang Bai , Menghua Sui , Yonghong Liu , Wentao Wu , Teng Gao , Min Yang , Dongzhou Jia , Runze Li , Yali Hou
CPC classification number: B23Q3/15503 , B23C1/06 , B23Q3/15713 , B23Q3/15722 , B23Q11/1046 , B23Q15/12 , B23Q17/0957 , B23Q17/0966 , Y10T409/304032 , Y10T483/10 , Y10T483/1755
Abstract: The disclosure provides a milling system and method under different lubrication conditions. The system uses a tool to mill the workpiece, a force measuring system to measure the milling force, a tool change system to replace the tools, a tool storage to store the tools. It can store the tools, provide the lubricating oil to the milling surface, select different tools according to different processing conditions, select the best angle differences of the unequal spiral angle tools according to different conditions comprising dry cutting, casting-type lubrication, minimal quantities of lubrication or minimal quantities of nanofluid lubrication, and/or choose the optimal tool according to different cutting parameters in order to obtain the minimum milling force.
-
公开(公告)号:US11761110B2
公开(公告)日:2023-09-19
申请号:US17837131
申请日:2022-06-10
Applicant: Qingdao University of Technology
Inventor: Zuquan Jin , Xiaoying Zhang , Jihong Jiang , Zhaoyi Chen , Pengcheng Ren , Xiaoqing Wang
CPC classification number: C25D9/08 , C03C17/42 , C23F13/12 , C23F13/20 , C03C2217/217 , C03C2217/231 , C03C2217/254 , C03C2217/78 , C03C2218/111 , C23F2201/02
Abstract: The present invention relates to a Z-type heterojunction photoanode film used for the photocathode protection of a reinforcing bar, the preparation method thereof and a method for the corrosion inhibition of mental materials from concrete structures in marine engineering by using the Z-type heterojunction photoanode film used for the photocathode protection of a reinforcing bar. The preparation method includes steps of preparing Fe2O3 on the conducting surface of a clean conductive substrate through the hydrothermal process, preparing Fe2O3-PANI composite photoanode film by depositing polyaniline on the surface of Fe2O3 through the electrochemical synthesis and preparing Ru-Fe2O3-PANI composite photoanode film on the surface of the Fe2O3-PANI composite photoanode film through the in situ chemical reduction method. The technical solution in the present invention can achieve highly effective photocathode protection of a reinforcing bar from concretes in marine engineering and improve the durability of concrete structures in marine engineering.
-
公开(公告)号:US11738380B2
公开(公告)日:2023-08-29
申请号:US16737871
申请日:2020-01-08
Applicant: Qingdao University of Technology
Inventor: Huawei Wang , Zijuan Lv , Yanan Wang , Yingjie Sun
CPC classification number: B09C1/10 , C12N1/20 , C12P3/00 , B09C2101/00
Abstract: This invention relates to a method of in-situ remediation of arsenic-contaminated soil, comprising the following steps: inoculating a bacterial strain, Pseudomonas putida MnB1 in a culture medium where an addition amount of the bacterial strain accounts for 2-10% (v/v) of the culture medium; shaking the culture medium with the bacterial strain at a rotation speed of 100-180 rpm at 15-35° C. for 1-5 days under an aerobic condition, thereby yielding an enriched bacterial strain; and adding manganese carbonate, ammonium ferrous sulfate, sodium citrate, a yeast extract and the enriched bacterial strain to arsenic contaminated soil; adding water to the soil until the soil has a moisture content of 50-70%, stirring the soil for 5-30 minutes, and culturing the bacterial strain in the soil under an aerobic/microaerobic condition at 10-40° C. for 2-6 weeks.
-
-
-
-
-
-
-
-
-