Abstract:
A density and viscosity sensor for measuring density and viscosity of a fluid, and method for measuring, are presented herein. The sensor comprises a resonating element, and actuating/detecting element, a connector and a housing. The actuating/detecting element is positioned within a chamber defined by the housing so as to be isolated from the fluid. The resonating element is arranged to be immersed in the fluid, and has a shape defining a first resonance mode and a second resonance mode characterized by different resonance frequencies and different quality factors. The first resonance mode is adapted to move a volume of fluid, and the second resonance mode is adapted to shear a surrounding fluid.
Abstract:
The invention concerns a device for mechanically locking with respect to a support an electronic component soldered on a printed circuit card directly mounted on said support. The invention comprises a main wall designed to rest against a support wall and at least an elastic tab forming a U-shaped back loop relative to said main wall, said main wall and said elastic tab bearing matching means for maintaining said tab in a position wherein it is compressed towards said main wall, said matching means being capable of being disengaged relative to one another by the effect of a tool actuated by an operator, said elastic tab being then released to be urged against the component.
Abstract:
A method for detecting vibrations generated by the running of a tire on a safety insert, wherein a vibration signal is measured within a given frequency band and the measurement thus made is processed to detect a mode of resonance generated by this running. The energy of the signal measured by a sensor in two frequency bands, one being narrow and the other being wide, which are centered on the same line of the mode of resonance, is determined. The ratio of these two energies is compared with a given warning threshold.
Abstract:
The friction clutch comprises a cover (8) with a base (80), a pressure plate (3) with a front friction face (30) for co-operating with a clutch friction and, set between the pressure plate (3) and the base (80) of the cover (8), a diaphragm (2) with a peripheral part extended inward by fingers (23) to oppose at will, by means of a nose (11) of a clutch bearing (10), the action of said peripheral part (21), a booster elastic washer (7) acting on the fingers (23) of the diaphragm (2) in the declutching direction resting on the cover (8): the booster washer (7) is arranged between the cover (8) and the leading-edge piece or nose (11) such that it is adapted to operate on the fingers (23) of the diaphragm (2) via said leading-edge piece or nose (11).
Abstract:
A method of assembling a mechanical part on a support includes making a projecting thickening situated substantially over a connection face of an anchor block of the part; depositing a layer of one of the components of a eutectic on at least one fixing zone of the support; using a tool for holding the thickening to move the part so that its connection face co-operates with the fixing zone of the support; raising the temperature of the eutectic point of the eutectic; exerting localized force on the thickening; and simultaneously subjecting the part or the support to mechanical stresses. The invention is particularly applicable to assembling a capacitive sensor. The invention is also directed to a mechanical part for carrying out the assembly method, as well as a tool for grasping the mechanical part.
Abstract:
A system for converting a first electric voltage into a second electric voltage, comprising: at least two input terminals and two output terminals; and switching members disposed between the terminals, which can convert the first voltage into the second voltage. At least one switching member comprises at least two arms connected in parallel and each arm includes an electronic switch that can be controlled such as to occupy either an on-state or an off-state, said switch comprising a control electrode and two conduction electrodes that conduct current in the on-state. The switching member comprises a common control terminal connected to the control electrode of the switch of each arm, as well as a first common conduction terminal and a second common conduction terminal connected respectively to a first conduction electrode and a second conduction electrode of the switch of each of the arms.
Abstract:
A corona igniter 20 includes an insulator 28 surrounding a central electrode 24 and a shell 30 surrounding the insulator 28. The shell 30 presents a shell gap 38 having a shell gap width ws between a shell lower end 34 and a shell inner surface 90 or shell outer surface 92. The shell 30 has a shell thickness ts decreasing toward the shell lower end 34 allowing the shell gap width ws to increase toward the shell lower end 34. The shell gap 38 is open at the shell lower end 34 allowing air to flow therein, and the shell gap width ws is greatest at the shell lower end 34. The increasing shell gap width ws enhances corona discharge 22 along the insulator 28 between the central electrode 24 and shell 30.
Abstract:
A drive train comprising an electric machine including a rotor and a stator, the stator being electrically connected to an alternating grid and having a stator frequency, and a bidirectional system for converting an alternating current into another alternating current. The conversion system is connected between the grid and the rotor, and comprises an ac/dc converter connected to the network, and an inverter connected between the ac/dc converter and the rotor, the inverter and the rotor being interconnected at an intermediate point for each phase of the alternating voltage. The drive train comprises a band-stop filter for a target interval of between 0.6 times the stator frequency and 1.4 times the stator frequency, said band-stop filter being connected between the intermediate points and attenuating the voltage at the intermediate point for the frequencies of the target interval.
Abstract:
A method of balancing voltages in a group of capacitors of a power electronic device, such as a multilevel power inverter, includes making a balancing determination regarding whether to (i) inject energy into the selected one of the capacitors from an energy storage element, or (ii) extract energy from the selected one of the capacitors into the energy storage element based on the voltage of a selected one of the capacitors, and either injecting energy into the selected one of the capacitors from the energy storage element, or extracting energy from the selected one of the capacitors into the energy storage element based on the balancing determination. Also, a voltage balancing circuit that implements the method. In one particular implementation, a spatial second derivative algorithm is used. In another particular implementation, a comparison to an average capacitor voltage is used.
Abstract:
A density and viscosity sensor 1 for measuring density and viscosity of fluid F, the sensor 1 comprising a resonating element 3, 3A, 3B, 3C, 3D arranged to be immersed in the fluid F, an actuating/detecting element 4A, 4B coupled to the resonating element, and a connector 7 for coupling to the actuating/detecting element 4A, 4B. The sensor 1 further comprises a housing 2 defining a chamber 8A isolated from the fluid F, the housing 2 comprising an area of reduced thickness defining a membrane 9 separating the chamber 8A from the fluid F. The actuating/detecting element 4A, 4B is positioned within the chamber so as to be isolated from the fluid F and mechanically coupled to the membrane 9. The resonating element 3, 3A, 3B, 3C, 3D arranged to be immersed in the fluid F is mechanically coupled to the membrane 9. The membrane 9 has a thickness enabling transfer of mechanical vibration between the actuating/detecting element 4A, 4B and the resonating element 3, 3A, 3B, 3C, 3D.