Abstract:
A process for recharging the reaction tubes of a tube bundle reactor with a new fixed catalyst bed, in which a heterogeneously catalyzed partial gas phase oxidation of an organic compound had been performed beforehand in a preceding fixed catalyst bed comprising Mo-comprising multielement oxide active compositions to form a steam-comprising product gas mixture, in which, before the recharge, solid deposit which had been deposited on the tube inner walls and comprises molybdenum oxide and/or molybdenum oxide hydrate is brushed away with the aid of a brush.
Abstract:
A process for starting-up a heterogeneously catalyzed partial gas phase oxidation of acrolein to acrylic acid or of methacrolein to methacrylic acid over a fixed catalyst bed disposed in a tube bundle reactor cooled by a heat exchange medium, wherein the temperature of the heat exchange medium is ≧290° C. and the temperature of that reactor plate surface which faces the reaction gas entry mixture and the temperature of the reaction gas entry mixture itself are ≦285° C.
Abstract:
Catalysts comprising a catalytically active composition, the catalytically active composition comprising vanadium, phosphorus, iron and oxygen, wherein the catalytically active composition has an iron:vanadium atomic ratio of 0.005 to
Abstract:
A process for preparing shaped catalyst bodies whose active composition is a multielement oxide, in which a finely divided precursor mixture with addition of graphite having a specific particle size is shaped to the desired geometry and then treated thermally.
Abstract:
A process for preparing shaped catalyst bodies whose active composition is a multielement oxide, in which a finely divided precursor mixture is shaped to a desired geometry with addition of boron nitride and subsequently treated thermally.
Abstract:
The invention relates to a method for the production of n-alkanes from mineral oil fractions and fractions from thermal or catalytic conversion plants, containing cyclic alkanes, alkenes, cyclic alkenes and/or aromatics. The invention further relates to a catalyst for carrying out said method.
Abstract:
A process for preparing shaped catalyst bodies whose active composition is a multielement oxide, in which a finely divided precursor mixture with addition of graphite having a specific particle size is shaped to the desired geometry and then treated thermally.
Abstract:
A process for preparing a coated catalyst in which a finely divided mixture of a multielement oxide comprising the elements Mo and V and a molybdenum oxide or a molybdenum oxide former is applied to the surface of a support body as an active composition.
Abstract:
A process for producing geometric shaped catalyst bodies K whose active material is a multielement oxide of stoichiometry [BiaZ1bOx]p[BicMo12FedZ2eZ3fZ4gZ5hZ6iOy]1, in which a finely divided oxide BiaZ1bOx and, formed from element sources, a finely divided mixture of stoichiometry BicMo12FedZ2eZ3fZ4gZ5hZ6i are mixed in a ratio of p:1, this mixture is used to form shaped bodies and these are treated thermally, where 0
Abstract:
A process for producing geometric shaped catalyst bodies K whose active material is a multielement oxide of stoichiometry [BiaZ1bOx]p[BicMo12FedZ2eZ3fZ4gZ5hZ6iOy]1, in which a finely divided oxide BiaZ1bOx and, formed from element sources, a finely divided mixture of stoichiometry BicMo12FedZ2eZ3fZ4gZ5hZ6i are mixed in a ratio of p:1, this mixture is used to form shaped bodies and these are treated thermally, where 0