Abstract:
Methods and apparatus are provided for dynamic voltage control of electric motors. An inverter provides an output voltage to an electric motor based on a gate voltage. The method includes determining a speed of the electric motor and modifying the gate voltage based on the speed of the electric motor. The apparatus includes a gate drive circuit and a controller coupled to the gate drive circuit. The gate drive circuit provides a gate voltage to a switch network, and the switch network produces the output voltage in response to the gate voltage. The controller modifies the gate voltage based on a speed of the electric motor.
Abstract:
Methods and systems are provided for aligning a resolver in an electric motor system. The method includes commanding a d-axis current command and a speed command, operating an electric motor without a load in response to the d-axis current command and the speed command, determining a rotor speed in response to the speed command, and determining an offset of the resolver based on the speed command and the rotor speed when the rotor speed has substantially stabilized.
Abstract:
Power capacitors for AC motors are mounted diametrically on associated transmissions. The power capacitors are in one embodiment annular and in another embodiment, arcuate. By having power capacitors mounted on transmission housings diametrically, cooling of the power capacitors is facilitated for both air and liquid cooling.
Abstract:
Methods and systems for controlling a power inverter in an electric drive system of an automobile are provided. The various embodiments control the power inverter by, responsive to a commanded torque of the electric motor being below a first torque level, controlling the power inverter to set a switching frequency of the power inverter at a first set frequency; and, responsive to the commanded torque of the electric motor being between the first torque level and a second torque level, controlling the power inverter to determine the switching frequency of the power inverter as a function of the commanded torque of the electric motor while maintaining the switching frequency above a dynamic frequency limit. The method reduces switching frequencies in the inverter at high commanded torques, while maintaining the switching frequencies above dynamic frequency limit that provides effective control over the motor.
Abstract:
Systems and apparatus are provided for an inverter module for use in a vehicle. The inverter module comprises a first electrical base and a second electrical base each having an electrically conductive mounting surface, wherein the electrical bases are physically distinct and electrically coupled. A first semiconductor switch has a surface terminal that is coupled to the electrically conductive mounting surface of the first electrical base. A second semiconductor switch has a surface terminal that is coupled to the electrically conductive mounting surface of the first electrical base. A first semiconductor diode and a second semiconductor diode each have a surface terminal, the surface terminals are coupled to the electrically conductive mounting surface of the second electrical base. The first semiconductor switch and first semiconductor diode are antiparallel, and the second semiconductor switch and second semiconductor diode are antiparallel.
Abstract:
In various embodiments, an electric motor drive system (400, FIG. 4) and a motor vehicle (1000, FIG. 10) include an inverter (404, FIG. 4) adapted to generate (604, FIG. 6), based on inverter control inputs, a number, N, of phase current waveforms (118, FIG. 1), and a phase current sampling apparatus (408, FIG. 4) having a same number, N, of current sensors (502, 503, 504, FIG. 5). Each of the current sensors is adapted to receive one of the phase current waveforms, and the current sensors are adapted simultaneously to sample the phase current waveforms and to generate digital values representing amplitudes of the phase current waveforms. The system and motor vehicle also include a controller (410, FIG. 4) adapted to receive the digital values, to perform an evaluation of the digital values, and to generate the inverter control inputs (462, FIG. 4) based on the evaluation.
Abstract:
A hybrid powertrain system includes an engine, an electric machine, a power electronics device including a plurality of electric circuit layers, and a cooling system. A method for managing thermal energy in the power electronics device includes monitoring a plurality of temperature sensors in the power electronics device, monitoring electric power into and out of the power electronics device, predicting temperatures for the plurality of electric circuit layers, and controlling the hybrid powertrain system based upon the predicted temperatures for the plurality of electric circuit layers.
Abstract:
Methods and apparatus are provided for dynamic voltage control of electric motors. An inverter provides an output voltage to an electric motor based on a gate voltage. The method includes determining a speed of the electric motor and modifying the gate voltage based on the speed of the electric motor. The apparatus includes a gate drive circuit and a controller coupled to the gate drive circuit. The gate drive circuit provides a gate voltage to a switch network, and the switch network produces the output voltage in response to the gate voltage. The controller modifies the gate voltage based on a speed of the electric motor.
Abstract:
Methods and systems are provided for controlling the charging of onboard energy storage systems of a plurality of plug-in vehicles using a remote command center. A system for directing the charging of a plurality of remotely located plug-in vehicles is provided. The system includes a communication system configured to transmit charging authorizations to charge each of the plurality of plug-in vehicles and to receive data related to power consumption from each of the plurality of plug-in vehicles. The system also includes a controller communicatively coupled to the communication system and configured to receive the data related to power consumption and to direct the charge authorizations based thereon. A database is also included in the system and is communicatively coupled to the controller, with the database configured to store the data related to power consumption.
Abstract:
Methods and systems are provided for monitoring an electrical system of a vehicle. Data pertaining to the electrical system is obtained. Calculation modules are performed using the data to generate intermediate determinations. An aggregate calculation module is performed using each of the intermediate determinations to generate an aggregate determination pertaining to the electrical system. Redundant intermediate calculations are performed using the data to generate redundant intermediate determinations. Each of the redundant intermediate determinations is used for comparison with a respective intermediate determination.