Abstract:
The present invention generally relates to a MEMS DVC having a shielding electrode structure between the RF electrode and one or more other electrodes that cause a plate to move. The shielding electrode structure may be grounded and, in essence, block or shield the RF electrode from the one or more electrodes that cause the plate to move. By shielding the RF electrode, coupling of the RF electrode to the one or more electrodes that cause the plate to move is reduced and capacitance modulation is reduced or even eliminated.
Abstract:
The present disclosure generally relates to a device having a capacitance sensor that detects a change in capacitance that occurs in the antenna whenever the antenna is in close proximity to a user's hand and/or head. Following detection of the capacitance change, the capacitance of the antenna may be changed by using a variable capacitor that is coupled to the sensor through a controller.
Abstract:
A MEMS switch contains an RF electrode 102, pull-down electrodes 104 and anchor electrodes 108 located on a substrate 101. A plurality of islands 226 are provided in the pull-down electrode and electrically isolated therefrom. On top of the RF electrode is the RF contact 206 to which the MEMS-bridge 212, 214 forms an ohmic contact in the pulled-down state. The pull-down electrodes 104 are covered with a dielectric layer 202 to avoid a short-circuit between the bridge and the pull-down electrode. Contact stoppers 224 are disposed on the dielectric layer 202 at locations corresponding to the islands 226, and the resulting gap between the bridge and the dielectric layer in the pulled-down state reduces dielectric charging. In alternative embodiments, the contact stoppers are provide within the dielectric layer 202 or disposed on the islands themselves and under the dielectric layer. The switch provides good controllability of the contact resistance of MEMS switches over a wide voltage operating range.
Abstract:
The present disclosure generally relates to a device having a capacitance sensor that detects a change in capacitance that occurs in the antenna whenever the antenna is in close proximity to a user's hand and/or head. Following detection of the capacitance change, the capacitance of the antenna may be changed by using a variable capacitor that is coupled to the sensor through a controller.
Abstract:
The present invention generally relates to a method of fabricating a MEMS device. In the MEMS device, a movable plate is disposed within a cavity such that the movable plate is movable within the cavity. To form the cavity, sacrificial material may be deposited and then the material of the movable plate is deposited thereover. The sacrificial material is removed to free the mov able plate to move within the cavity. The sacrificial material, once deposited, may not be sufficiently planar because the height difference between the lowest point and the highest point of the sacrificial material may be quite high. To ensure the movable plate is sufficiently planar, the planarity of the sacrificial material should be maximized. To maximize the surface planarity of the sacrificial material, the sacrificial material may be deposited and then conductive heated to permit the sacrificial material to reflow and thus, be planarized.
Abstract:
The present invention generally relates to a method and apparatus for damping a plate electrode or switching element in a MEMS DVC device. A resistor disposed between a waveform controller and the electrodes of the MEMS DVC causes the voltage to increase while capacitance decreases during the time that the plate electrode is moving. Due to the increase in voltage and decrease in capacitance, the electrostatic force that resists the plate electrode movement away from an electrode increases, which in turn dampens the movement of the plate electrode.
Abstract:
The present invention generally relates to methods for producing MEMS or NEMS devices and the devices themselves. A thin layer of a material having a lower recombination coefficient as compared to the cantilever structure may be deposited over the cantilever structure, the RF electrode and the pull-off electrode. The thin layer permits the etching gas introduced to the cavity to decrease the overall etchant recombination rate within the cavity and thus, increase the etching rate of the sacrificial material within the cavity. The etchant itself may be introduced through an opening in the encapsulating layer that is linearly aligned with the anchor portion of the cantilever structure so that the topmost layer of sacrificial material is etched first. Thereafter, sealing material may seal the cavity and extend into the cavity all the way to the anchor portion to provide additional strength to the anchor portion.
Abstract:
The present disclosure generally relates to any device capable of wireless communication, such as a mobile telephone or wearable device, having one or more antennas. After measuring reflection coefficients of a device at three different DVC states, the reflection coefficient for all other DVC states can be calculated. Thus, based solely upon three reflection coefficient measurements, the antenna can be tuned to adjust for any changes in impedance at the antenna.
Abstract:
The present disclosure generally relates to a MEMS device for reducing ESD. A contacting switch is used to ensure that there is a closed electrical contact between two electrodes even if there is no applied bias voltage.
Abstract:
The present invention generally relates to a mechanism for making a MEMS switch that has a robust RF-contact by avoiding currents to run through a thin sidewall in a via from the RF-contact to the underlying RF-electrode.