Abstract:
Provided is an anti-collision method and apparatus used during wireless power transmission with respect to a plurality of target devices. According to one general aspect, an anti-collision method in wireless power transmission may include: transmitting, from a source device to one or more target devices, an access standard instruction including an access standard that is used for identifying the target devices; transmitting, to the one or more target devices, a call parameter used to detect identifications (IDs) of the target devices, generated based on the access standard; and assigning, to the one or more target devices, control IDs based on response signals that the one or more target devices transmits in response to the call parameter.
Abstract:
A wireless power transmission and charging system is provided. The wireless power transmission and charging system may include a source device to wirelessly transmit a power, and a target device to wirelessly receive the power. A communication error may be reduced, and a power transmission efficiency may be increased, by performing communication between the source device and the target device using a shortened packet generated by converting, for example, a packet of a byte scale to a packet of a bit scale.
Abstract:
An organic light emitting diode (OLED) display includes a substrate and an organic light emitting element on the substrate and including a first electrode, a plurality of organic emission layers on the first electrode and including at least one P-type impurity doped organic emission layer, and a second electrode on the plurality of organic emission layers.
Abstract:
A reflective type complex display device comprises: a lower substrate; an organic light-emitting layer formed on a top surface of the lower substrate for emitting light when supplied with current; a sealing layer covering the organic light-emitting layer so as to seal the organic light-emitting layer from the outside; an upper substrate formed above the sealing layer with a gap therebetween; liquid crystals injected between the upper substrate and the sealing layer; a transparent electrode formed on a surface of the upper substrate; and a polarizer formed on another surface of the upper substrate. The transparent electrode comprises a first electrode and a second electrode which are alternately arranged, and which drive the liquid crystals by generating an electric field in response to different voltages applied thereto.
Abstract:
A method of driving a display panel includes applying a common voltage to the display panel, sensing a frequency of the display panel to generate a frequency signal, adjusting a gain of an operational amplifier based on the frequency signal, receiving a feedback common voltage from the display panel, and compensating the common voltage using an input resistor, the operational amplifier and a feedback resistor based on the feedback common voltage to apply the compensated common voltage to the display panel. The operational amplifier includes an inverting input terminal connected to the input resistor, a non-inverting input terminal to which a reference common voltage is applied and an output terminal. The feedback resistor is between the inverting input terminal and the output terminal.
Abstract:
A driving circuit includes a plurality of stages driven in response to a start signal. Each normal stage outputs a gate signal and a carry signal, increases an electric potential of a node in response to a previous carry signal of a previous stage, and decreases the gate signal to a first voltage in response to a carry signal from a next stage. Each stage applies a second voltage lower than the first voltage to the node in response to receipt of a carry signal from a second next stage. A first dummy stage outputs a first dummy carry signal to the last two normal stages in response to a last carry signal from the last normal stage and the start signal, and a second dummy stage outputs a second dummy carry signal to the last normal stage in response to the first dummy carry signal and the start signal.
Abstract:
An organic light-emitting device including: a substrate; a first electrode disposed on the substrate; a second electrode disposed on the substrate and comprising silver (Ag); an emission layer between the first electrode and the second electrode; an electron injection layer between the emission layer and the second electrode and comprising a mixture of an alkali metal-containing compound and a first metal; and a capping layer disposed on the second electrode.
Abstract:
In a composition of forming a passivation layer, the composition includes about 30 to about 60 percent by weight of a mixed polymer resin formed by blending polyamic acid and polyhydroxy amide, about 3 to about 10 percent by weight of a photoactive compound, about 2 to about 10 percent by weight of a cross-linking agent and an organic solvent. The passivation layer formed by using the composition has superior mechanical and physical properties, in which disadvantages of polyimide and polybenzoxazole are compensated by mixing both materials.
Abstract:
Systems and methods are provided for discrete resizing of power devices. The systems and methods can include a plurality of unit power amplifiers arranged in parallel, where each unit power amplifier includes at least one first input port, at least one first output port, and a plurality of sub-power-device cells configured in parallel between the at least one first input port and the at least one first output port; a switch controller, where the controller is operative to activate or deactivate at least one of the plurality of sub-power-device cells of a respective unit power amplifier; and an output matching network, where the matching network is configured to combine respective outputs from the respective plurality of unit power amplifiers to generate a system output, wherein during an operational state, all of the plurality of unit power amplifiers contribute outputs to the matching network to generate the system output.
Abstract:
A SPDT or SPMT switch may include a transformer having a primary winding and a secondary winding, where a first end of the secondary winding is connected to a single pole port, where a first end of the primary winding is connected to a first throw port; a first switch having a first end and a second end, where the first end is connected to ground; and a second switch, where a second end of the secondary winding is connected to both a second end of the first switch and a first end of the second switch, where a second end of the second switch is connected to a second throw port, where the first switch controls a first communication path between the single pole port and the first throw port, and where the second switch controls a second communication path between the second throw port and the single pole port.