摘要:
Provided are a display device and a method of manufacturing the same. The display device includes: a substrate divided into a display area and a peripheral area; a first metal wiring formed on the display area of the substrate; and a second metal wiring formed on the peripheral area of the substrate and including a gate driver. The first metal wiring is thicker than the second metal wiring.
摘要:
Provided are a wire structure, a method for fabricating a wire, a thin film transistor (TFT) substrate, and a method for fabricating a TFT substrate. The wire structure includes a barrier layer formed on a substrate and including copper nitride and a copper conductive layer formed on the barrier layer and including copper or a copper alloy
摘要:
A thin film transistor array panel is provided and includes a gate line, a gate insulating layer covering the gate line, a semiconductor layer disposed on the gate insulating layer, and a data line and a drain electrode disposed on the semiconductor layer. The data line and the drain electrode have a dual-layered structure including a lower layer and an upper layer with the lower layer having a first portion protruded outside the upper layer and the semiconductor layer having a second portion protruded outside the edge of the lower layer.
摘要:
A thin-film transistor includes a semiconductor pattern, source and drain electrodes and a gate electrode, the semiconductor pattern is formed on a base substrate, and the semiconductor pattern includes metal oxide. The source and drain electrodes are formed on the semiconductor pattern such that the source and drain electrodes are spaced apart from each other and an outline of the source and drain electrodes is substantially same as an outline of the semiconductor pattern. The gate electrode is disposed in a region between the source and drain electrodes such that portions of the gate electrode are overlapped with the source and drain electrodes. Therefore, leakage current induced by light is minimized. As a result, characteristics of the thin-film transistor are enhanced, after-image is reduced to enhance display quality, and stability of manufacturing process is enhanced.
摘要:
A thin-film transistor includes a semiconductor pattern, source and drain electrodes and a gate electrode, the semiconductor pattern is formed on a base substrate, and the semiconductor pattern includes metal oxide. The source and drain electrodes are formed on the semiconductor pattern such that the source and drain electrodes are spaced apart from each other and an outline of the source and drain electrodes is substantially same as an outline of the semiconductor pattern. The gate electrode is disposed in a region between the source and drain electrodes such that portions of the gate electrode are overlapped with the source and drain electrodes. Therefore, leakage current induced by light is minimized. As a result, characteristics of the thin-film transistor are enhanced, after-image is reduced to enhance display quality, and stability of manufacturing process is enhanced.
摘要:
A manufacturing method of a thin film transistor (TFT) includes forming a gate electrode including a metal that can be combined with silicon to form silicide on a substrate and forming a gate insulation layer by supplying a gas which includes silicon to the gate electrode at a temperature below about 280° C. The method further includes forming a semiconductor on the gate insulation layer, forming a data line and a drain electrode on the semiconductor and forming a pixel electrode connected to the drain electrode.
摘要:
A thin film panel includes a substrate, a gate line formed on the substrate, a gate insulating layer formed on the gate line, a semiconductor layer formed on the gate insulating layer, a data line, including a source electrode, and a drain electrode formed on the gate insulating layer or the semiconductor layer, and a pixel electrode connected to the drain electrode, wherein at least one of the gate line and the data line and drain electrode includes a first conductive layer made of a molybdenum Mo-niobium Nb alloy and a second conductive layer made of a copper Cu-containing metal.
摘要:
The present invention relates to a thin film transistor substrate and a metal wiring method thereof, more particularly to a thin film transistor substrate comprising self-assembled monolayers between the substrate and the metal wiring, and a metal wiring thereof. Since a thin film transistor substrate of the present invention comprises three-dimensionally cross-linked self-assembled monolayers between the Si surface and the metal wiring, it has good adhesion ability and anti-diffusion ability.
摘要:
A thin film transistor showing desirable contact characteristics during contact with indium tin oxide (ITO) or indium zinc oxide (IZO), in which a first conductive pattern including a gate electrode and a second conductive pattern including a source electrode and a drain electrode are formed without an etching process, a TFT substrate including the TFTs, and a method of manufacturing the same. The thin film transistor includes a gate electrode formed of a first conductive layer, a gate insulating layer covering the gate electrode, a semiconductor layer forming a channel on the gate insulating layer; an ohmic contact layer formed on the semiconductor layer, and a source electrode and a drain electrode formed of a second conductive layer and of a third conductive layer. The second conductive layer includes an aluminum-nickel alloy and nitrogen and is formed on the semiconductor layer. The third conductive layer includes an aluminum-nickel alloy and is formed on the second conductive layer.
摘要:
A thin film transistor panel includes; an insulating substrate, a gate line including a gate electrode disposed on the insulating substrate, a gate insulating layer disposed on the gate electrode, a semiconductor layer disposed on the gate insulating layer, the semiconductor layer including a sidewall, a data line including a source electrode disposed on the semiconductor layer, a drain electrode disposed substantially opposite to and spaced apart from the source electrode, a first protective film disposed on the data line, the first protective film including a sidewall, a second protective film disposed on the first protective film and including a sidewall, and a pixel electrode electrically connected to the drain electrode, wherein the sidewall of the second protective film is disposed inside an area where the sidewall of the first protective film is disposed, and the source electrode and the drain electrode cover the sidewall of the semiconductor layer.