Abstract:
A gate driver for driving a display device is disclosed. The gate driver, which includes: a first input buffer configured to for receiving a reference voltage and outputting a first buffered voltage, a control circuit configured to for outputting a plurality of scan starting signals and compensating starting signals, a plurality of compensating output buffers, and a plurality of scan output buffers. Each of the plurality of compensating output buffers is configured to respectively receive one of the compensating starting signals and respectively output a compensating signal, wherein, each compensating output buffer receives the first buffered voltage as power. Each of the plurality of scanning output buffers is configured to respectively receive one of the scan starting signals and output a scan signal.
Abstract:
The present invention relates to a driving method for cholesteric liquid crystal display. A plurality of pixels of the display are controlled by a plurality of row drivers and a plurality of column drivers. According to the method of the invention, firstly, a DC input voltage or a non-symmetric AC input voltage is applied to the row drivers and the column drivers so that the voltage of the pixel is larger than a withstand voltage of the drivers. Then, an initial column signal and an initial row signal are respectively supplied by the corresponding column driver and row driver so as to initialize the corresponding pixel. The polarity of the initial column signal is different from that of the initial row signal. Because the initial row signal minus the initial column signal equals the signal of the pixel, the amplitude of the signal applied to the pixel can be increased. Therefore, according to the invention, the initial time of the pixel can be decreased, and the transferring speed of the pixel can be improved.
Abstract:
By adding multiplexing units to selectively transmit signals associated with a functional circuitry of an IC die to test pads, a probe card with less pin counts than the pad number of the IC die can be utilized for testing the functional circuitry. Therefore, the pad number/pad pitch of the IC die is not limited by the pitch of the conventional probe card. A high pin count IC die design is thereby available.
Abstract:
A gate driver for driving a display device is disclosed. The gate driver, which includes: a first input buffer configured to for receiving a reference voltage and outputting a first buffered voltage, a control circuit configured to for outputting a plurality of scan starting signals and compensating starting signals, a plurality of compensating output buffers, and a plurality of scan output buffers. Each of the plurality of compensating output buffers is configured to respectively receive one of the compensating starting signals and respectively output a compensating signal, wherein, each compensating output buffer receives the first buffered voltage as power. Each of the plurality of scanning output buffers is configured to respectively receive one of the scan starting signals and output a scan signal.
Abstract:
An integrated circuit with a reduced pad bump area and the manufacturing method thereof are disclosed. The integrated circuit includes a semiconductor substrate, an interconnection layer, a passivation layer, and at least a bump. The semiconductor substrate has a semiconductor device thereon. The interconnection layer is disposed on the semiconductor substrate and topped with a top metal layer which at least includes a bonding pad and a conductive line. The passivation layer is disposed on the interconnection layer and has at least an opening to expose the bonding pad. The bump is disposed on the passivation layer to connect the bonding pad through the opening and is extended to a coverage area not directly over the bonding pad.
Abstract:
A layout structure of a decoder with m*n nodes and the method thereof are provided. The nodes comprise a plurality of transistor nodes and a plurality of channel nodes. The manufacturing method of the transistor node comprises forming a gate, a first source/drain region and a second source/drain region. The channel node is fabricated by forming a channel. The channel, the first source/drain region and the second source/drain region are formed at the same time with the same material. The decoder circuit with smaller width is accomplished without additional mask in the invention.
Abstract:
A gate driving apparatus for driving a pixel array on a panel. The apparatus includes a driver chip having a first transistor with a gate coupled to receive a Nth gate driving signal, a source coupled to receive a first voltage and a drain coupled to a Nth scan line of the pixel array, and a driving circuit formed on the panel, providing a second voltage to the Nth scan line when the first transistor in the driver chip is turned off by the Nth gate driving signal and providing the first voltage to the Nth scan line when the first transistor is turned on by the Nth gate driving signal.
Abstract:
A driver integrated circuit (IC) for driving a panel having pixels controlled by gate lines and data lines is disclosed, including a power circuit for generating a high level voltage and a low level voltage, a timing controller, a source driving circuit controlled by the timing controller to drive the data lines, a gate driving circuit controlled by the timing controller to selectively enable one of the gate lines for a line period. The gate driving circuit first asserts the selected gate line with the high level voltage in order to activate the corresponding pixels for receiving the driving signals from the corresponding data lines, and the gate driving circuit subsequently asserts the selected gate line with the low level voltage such that the corresponding pixels are still activated for receiving the driving signals. An LCD device utilizing the driver IC is also provided.
Abstract:
An integrated circuit with a reduced pad bump area and the manufacturing method thereof are disclosed. The integrated circuit includes a semiconductor substrate, an interconnection layer, a passivation layer, and at least a bump. The semiconductor substrate has a semiconductor device thereon. The interconnection layer is disposed on the semiconductor substrate and topped with a top metal layer which at least includes a bonding pad and a conductive line. The passivation layer is disposed on the interconnection layer and has at least an opening to expose the bonding pad. The bump is disposed on the passivation layer to connect the bonding pad through the opening and is extended to a coverage area not directly over the bonding pad.
Abstract:
A semiconductor device includes a semiconductor chip, a plurality of bumps and at least one electrically conductive component. The semiconductor chip includes an active area having electronic circuits formed therein and a plurality of pads. The plurality of bumps is placed on the semiconductor chip, wherein a location where at least one of the bumps is located on the semiconductor chip does not overlap a location where a specific pad of the pads is located on the semiconductor chip. The electrically conductive component connects a top surface of at least the bump and the specific pad.