Abstract:
A semiconductor device includes a semiconductor chip, a plurality of bumps and at least one electrically conductive component. The semiconductor chip includes an active area having electronic circuits formed therein and a plurality of pads. The plurality of bumps is placed on the semiconductor chip, wherein a location where at least one of the bumps is located on the semiconductor chip does not overlap a location where a specific pad of the pads is located on the semiconductor chip. The electrically conductive component connects a top surface of at least the bump and the specific pad.
Abstract:
A chip structure and a chip package structure are disclosed herein. The chip structure includes a chip and a bump. The chip includes at least one pad. The bump is disposed on a bounding region of the pad. The shape of the bump is triangular pillar or trapezoidal pillar. A surface area of connection between the bump and the pad is less than or equal to the bounding region. Therefore, the material usage and the cost of the bump can be reduced. In addition, such shape of the bump has directional characteristic so that it is easy to perform the chip testing via the identifiable pads, and perform the package process of bonding the chip to a circuit board or any carriers.
Abstract:
A COF packaging structure includes a substrate, a first conductive foil, and a second conductive foil. The substrate has a first surface and a second surface opposite to the first surface. The first conductive foil is disposed on the first surface of the substrate and has a first designated pattern for bump bonding. The second conductive foil is disposed on the second surface of the substrate and has a second designated pattern, wherein the area of the second designated pattern is not smaller than the area of the first designated pattern.
Abstract:
A semiconductor device including a semiconductor substrate, a contact pad, a passivation layer, a bump, and a seeding layer is provided. The semiconductor substrate has an active surface. The contact pad is disposed on the active surface. The passivation layer is disposed on the active surface and exposes a central part of the contact pad. The seeding layer is disposed on the exposed central part of the contact pad. The bump has a top surface, a bottom surface opposite to the top surface, and a side surface connecting the top surface and the bottom surface. The bump is disposed on the seeding layer. The bump is placed in contact with the seeding layer by the bottom surface and by part of the side surface.
Abstract:
A chip structure and a bonding pad are provided. The chip structure comprises a chip and at least a bonding pad. The chip has an active surface. The bonding pad is disposed on the active surface of the chip. The bonding pad comprises a polygonal body and a plurality of first protruding portions. The polygonal body has a first planar surface and a corresponding second planar surface. The second planar surface of the polygonal body is in contact with the chip. The first protruding portions are disposed on the first planar surface at the corner regions of the polygonal body. By modifying the geometric shape of the bonding pad, the yield of bonding the chip structure and another device together through the bonding pad is increased.
Abstract:
A chip structure and a chip package structure are disclosed herein. The chip structure includes a chip and a bump. The chip includes at least one pad. The bump is disposed on a bounding region of the pad. The shape of the bump is triangular pillar or trapezoidal pillar. A surface area of connection between the bump and the pad is less than or equal to the bounding region. Therefore, the material usage and the cost of the bump can be reduced. In addition, such shape of the bump has directional characteristic so that it is easy to perform the chip testing via the identifiable pads, and perform the package process of bonding the chip to a circuit board or any carriers.
Abstract:
A COF packaging structure includes a substrate, a first conductive foil, and a second conductive foil. The substrate has a first surface and a second surface opposite to the first surface. The first conductive foil is disposed on the first surface of the substrate and has a first designated pattern for bump bonding. The second conductive foil is disposed on the second surface of the substrate and has a second designated pattern, wherein the area of the second designated pattern is not smaller than the area of the first designated pattern.
Abstract:
The invention relates to a substrate with slot. The substrate of the invention comprises an active surface and a plurality of metal plates. The metal plates are formed on the active surface. Each metal plate has a first surface and a second surface. The first surface is connected to the active surface. At least one metal plate has at least one slot formed on the second surface. Therefore, according to the substrate with slot of the invention, a resin for connecting a chip and the metal plates can entirely seal sides and corners of the chip so as to prevent water or dust from entering the chip and protect the chip.
Abstract:
The invention relates to a substrate with slot. The substrate of the invention comprises an active surface and a plurality of metal plates. The metal plates are formed on the active surface. Each metal plate has a first surface and a second surface. The first surface is connected to the active surface. At least one metal plate has at least one slot formed on the second surface. Therefore, according to the substrate with slot of the invention, a resin for connecting a chip and the metal plates can entirely seal sides and corners of the chip so as to prevent water or dust from entering the chip and protect the chip.
Abstract:
A chip structure and a bonding pad are provided. The chip structure comprises a chip and at least a bonding pad. The chip has an active surface. The bonding pad is disposed on the active surface of the chip. The bonding pad comprises a polygonal body and a plurality of first protruding portions. The polygonal body has a first planar surface and a corresponding second planar surface. The second planar surface of the polygonal body is in contact with the chip. The first protruding portions are disposed on the first planar surface at the corner regions of the polygonal body. By modifying the geometric shape of the bonding pad, the yield of bonding the chip structure and another device together through the bonding pad is increased.