Abstract:
A method of analyzing a composition of a human body having a plurality of body segments is disclosed. The method can include applying a current signal to a body. The method can further include simultaneously measuring a plurality of voltage signals from a plurality of measuring positions of the body during a predetermined period, and processing at least two of the plurality of voltage signals to determine a composition parameter of a body segment so as to assess or analyze composition of the body.
Abstract:
An endoscope, an endoscope system having an endoscope, and an endoscope control method are disclosed. The endoscope includes: a main body and a buoyancy control device. The main body may be configured in the form of a capsule and include an image capturing unit for capturing image information. The buoyancy control device may control buoyancy by changing the volume of the main body. Images of various types of internal organs can be precisely captured.
Abstract:
An endoscope and method for determining a position of an endoscope body within the human body are disclosed. The endoscope (100) includes at least one first electrode (200) provided in an endoscope body and adapted to generate and transmit an electric signal, at least one second electrode adapted to receive the electric signal transmitted from the first electrode (200), a database for storing electric potential values depending on positions of the endoscope body, and a controller for determining the position of the endoscope body by comparing the electric signal with the electric potential values. The endoscope can recognize the position of the endoscope within the internal organs of the human body with the use of the electric signal induction arrangement and thus, can recognize accurate positions of illness symptoms of the internal organs.
Abstract:
An apparatus for analyzing body composition based on bioelectrical impedance analysis, and a method therefor are disclosed. The method for analyzing body composition includes the step of providing eight electrodes for being contacted to a right palm, a right thumb, a left palm, a left thumb, a right front sole, a right rear sole, a left front sole and a left rear sole. Then a switch is selected by a command of a micro-processor so as to form a current path. Then a current is made to flow through said selected electrodes and through a human body to an impedance measuring instrument. Then a switch is selected by a command of said micro-processor so as to form voltage electrodes. Then impedances for respective body portions are measured by means of the impedance measuring instrument. Then impedances of two body portions are decided based on the current and voltage of the impedance measuring instrument. Then the body composition is analyzed based on the measured impedance.
Abstract:
The present invention relates to an image sensor for a capsule endoscope which enables a dual mode operation, and more particularly, to an image sensor for a capsule endoscope wherein two image sensors identically designed and manufactured for photographing the inside of a human body are used and set as a master and a slave, respectively so as to enable a dual mode operation in which two chips are linkage-operated.
Abstract:
The present invention provides a valve for an engine and a method for treating the surface thereof. The valve for the engine includes a buffer layer, an intermediate layer, a TiAlN/CrN first nanostructured multilayer, and a TiAlCN/CrCN second nanostructured multilayer. The buffer layer is coated over a surface of a stem part as a lowermost layer and is formed of Ti or Cr. The intermediate layer is coated over the buffer layer and is formed of CrN, TiN, or TiCN. The TiAlN/CrN first nanostructured multilayer is coated over the intermediate layer. The TiAlCN/CrCN second nanostructured multilayer is coated over the TiAlN/CrN first nanostructured multilayer as an uppermost layer.
Abstract:
Disclosed is a surface coating film for a forming machine, including: a substrate; a nitride layer on the substrate; a multilayered film layer deposited on the nitride layer by reaction of nitrogen (N) with a TiAl target and a Cr target; and a carbonitride layer deposited on the multilayered film layer by reaction of nitrogen (N) and carbon (C) with a TiAl target and a Cr target.
Abstract:
A method of analyzing a composition of a human body having a plurality of body segments is disclosed. The method can include applying a current signal to a body. The method can further include simultaneously measuring a plurality of voltage signals from a plurality of measuring positions of the body during a predetermined period, and processing at least two of the plurality of voltage signals to determine a composition parameter of a body segment so as to assess or analyze composition of the body.
Abstract:
The present invention relates to an image sensor for a capsule endoscope which enables a dual mode operation, and more particularly, to an image sensor for a capsule endoscope wherein two image sensors identically designed and manufactured for photographing the inside of a human body are used and set as a master and a slave, respectively so as to enable a dual mode operation in which two chips are linkage-operated.
Abstract:
A method of analyzing a composition of a human body having a plurality of body segments is disclosed. The method can include applying a current signal to a body. The method can further include simultaneously measuring a plurality of voltage signals from a plurality of measuring positions of the body during a predetermined period, and processing at least two of the plurality of voltage signals to determine a composition parameter of a body segment so as to assess or analyze composition of the body.