Abstract:
A device (10,10′,20,20′) for digitizing a center of rotation of a hip joint implant component (A,F) with respect to a bone element in computer-assisted surgery. The device (10,10′,20,20′) comprises a detectable member (12,22) trackable for position and orientation by a computer-assisted surgery system (30). A body (11,21) is connected to the detectable member (12,22) in a known geometry. The body (11,21) has a coupling portion (14,14′,24,25) adapted to be coupled to the hip joint implant component (A,F) in a predetermined configuration. The center of rotation of the hip joint implant component (A,F) is calculable in the predetermined configuration as a function of the known geometry and of the position and orientation of the detectable member (12,22).
Abstract:
A surgical system for positioning a prosthetic component on an anatomy of a patient includes a surgical tool configured to engage the prosthetic component, a force system configured to provide at least some force to the surgical tool, and a controller programmed to compare a target pose of the prosthetic component and an actual pose of the prosthetic component engaged by the surgical tool and generate control signals that cause the force system to allow movement of the surgical tool within a range of movement and provide haptic feedback to constrain a user's ability to manually move the surgical tool beyond the range of movement. The haptic feedback resists movement of the surgical tool by the user that would cause substantial deviation between at least one aspect of the actual pose of the prosthetic component and a corresponding aspect of the target pose of the prosthetic component. The controller is programmed to generate control signals that cause the force system to maintain the haptic feedback as the user implants the prosthetic component on the anatomy.
Abstract:
A computer-assisted surgery system for guiding an operator in altering a pelvis. A sensing apparatus is provided for tracking a reference tool and a bone altering tool. A position calculator calculates a position and orientation of a pelvic frame of reference as a function of the tracking of the reference tool, and for calculating a position and orientation of the bone altering tool with respect to the frame of reference. A source of posture data and a posture data correction calculator are provided and are operative to provide a display of information allowing an operator to take into consideration the posture data from the source of posture data when altering the pelvis. A display unit is connected to the position calculator and to the posture data correction calculator for displaying the display of information and the bone altering tool with respect to the pelvic frame of reference.
Abstract:
A CAS system and method for measuring surgical parameters during hip replacement surgery to guide an operator in inserting a hip joint implant in a femur, comprising a first trackable reference in fixed relation with the pelvis and a registration tool. A sensor apparatus tracks the first trackable reference and the registration tool. A controller unit is connected to the sensor apparatus so as to receive tracking data for the first trackable reference and the registration tool. The controller unit has a position and orientation calculator to calculate from the tracking data a position and orientation of the pelvic trackable reference to track the pelvic frame of reference, and of the registration tool to produce a femoral frame of reference at two sequential operative steps. A reference orientation adjustor receives tracking data for the pelvic frame of reference, and the femoral frame of reference associated with the first trackable reference, to orient the femoral frame of reference in a reference orientation with respect to the pelvic frame of reference, and to produce a reference adjustment value as a function of the reference orientation. A surgical parameter calculator receives tracking data from the registration tool to calculate surgical parameters as a function of the reference adjustment value, the surgical parameters at the two sequential operative steps being related by the reference orientation.
Abstract:
A surgical robotic system is disclosed that provides a combination of a programmed control, when a high degree of accuracy is required and manual control when a high degree of accuracy is not required.
Abstract:
A haptic robotic system for reaming an acetabulum prior to inserting an acetabular cup is more accurate than conventional instruments and may reduce the risk of dislocation and improve durability of a hip implant. Disclosed is a three-dimensional tool path, referred to as a haptic volume. Once the haptic volume is implemented into the software of a haptically constrained surgical robotic system, the cutting tool or reamer can only be utilized within the haptic volume. The haptic volume guides the surgeon in preparing the final reamed bone surface with a greatly reduced chance of the reaming unintended bone and greatly increases the chance that the reaming procedure may be carried out using one reaming tool, or using a single-stage reaming process.
Abstract:
A system for calculating a position and orientation of an acetabular cup in computer-assisted surgery comprises a first trackable reference secured to a pelvis, with a frame of reference being associated with the first trackable reference. A device is positionable between a femoral neck and the acetabulum of the pelvis in a known relation, the device having a second trackable reference. Sensors track the trackable references for position and orientation. A position/orientation calculator calculates a position and orientation of the frame of reference and of the device and for determining an orientation of the neck axis with respect to the frame of reference from the known relation at a desired position of the femur. An implant position/orientation calculator provides cup implanting information with respect to the orientation of said neck axis as a function of the tracking for position and orientation of at least the first trackable reference.
Abstract:
An endoprosthesis for a joint, in particular a an intervertebral implant with a central axis, a top part, a bottom part and a joint provided between them, wherein the joint comprises at least two articular surfaces A and B that can slide on one another; the top part has a top apposed surface that intersects the central axis and lateral surfaces; the bottom part has a bottom apposed surface that intersects the central axis and lateral surfaces; and wherein the endoprosthesis comprises at least channel suitable to convey body fluid, said channel terminating in one of the two articular surfaces A and B and connecting it with the exterior of the endoprosthesis for the joint.
Abstract:
A computer-assisted surgery system for guiding an operator in altering a pelvis. A sensing apparatus is provided for tracking a reference tool and a bone altering tool. A position calculator calculates a position and orientation of a pelvic frame of reference as a function of the tracking of the reference tool, and for calculating a position and orientation of the bone altering tool with respect to the frame of reference. A source of posture data and a posture data correction calculator are provided and are operative to provide a display of information allowing an operator to take into consideration the posture data from the source of posture data when altering the pelvis. A display unit is connected to the position calculator and to the posture data correction calculator for displaying the display of information and the bone altering tool with respect to the pelvic frame of reference.
Abstract:
A surgical system for positioning a prosthetic component on an anatomy of a patient includes a surgical tool configured to engage the prosthetic component, a force system configured to provide at least some force to the surgical tool, and a controller programmed to compare a target pose of the prosthetic component and an actual pose of the prosthetic component engaged by the surgical tool and generate control signals that cause the force system to allow movement of the surgical tool within a range of movement and provide haptic feedback to constrain a user's ability to manually move the surgical tool beyond the range of movement. The haptic feedback resists movement of the surgical tool by the user that would cause substantial deviation between at least one aspect of the actual pose of the prosthetic component and a corresponding aspect of the target pose of the prosthetic component. The controller is programmed to generate control signals that cause the force system to maintain the haptic feedback as the user implants the prosthetic component on the anatomy.