Abstract:
A structure and method operable to create a reusable template for detachable thin semiconductor substrates is provided. The template has a shape such that the 3-D shape is substantially retained after each substrate release. Prior art reusable templates may have a tendency to change shape after each subsequent reuse; the present disclosure aims to address this and other deficiencies from the prior art, therefore increasing the reuse life of the template.
Abstract:
The present invention relates to methods of forming substrate elements, including semiconductor elements such as nanowires, transistors and other structures, as well as the elements formed by such methods.
Abstract:
Aspects of the invention include plasma generating devices and systems thereof, as well as methods of using the same in plasma generation. Embodiments of the plasma generating devices include a resonator having a discharge gap and a ground plane disposed on opposing sides of a substrate; and a gas flow element configured to flow gas through the discharge gap. In using the plasma generating devices, a gas is flowed through the discharge gap and sufficient power is applied to the resonator to produce a plasma, e.g., in the form of a plasma jet, at the discharge gap. The subject devices and methods find use in a variety of different applications.
Abstract:
Aspects of the invention include sample ionizing devices and methods of use thereof. Embodiments of the sample ionizing devices include a microplasma generation source with a plasma generation region, a sample input port for delivering a sample to the plasma generation region, and a gas flow element configured to flow gas through the microplasma generation source independently of the sample input port. The devices and methods of the invention find use in a variety of different applications, including analyte detection applications.
Abstract:
An attachment system. The attachment system includes a first structure and a second structure. The first structure has a surface and a recess in the surface. The second structure is molded into the recess and extends above the surface. The second structure adheres to the first structure at a boundary of the recess.
Abstract:
A wire-drawing machine, suitable for use in-line with an enamelling machine, comprises a plurality of individual wire-drawing capstans mounted in individual bearings, at least one for each capstan. The capstans are arranged in a substantially planar rectangular array (comprising rows and columns of the capstans) with their axes aligned with the rows thereof. A series of parallel drive shafts, each serve all the capstans of one row or one column of the array. The capstans of one column are associated with a single wire line whereas the capstans of any one row are associated with a corresponding drawing stage for all the wires lines.