Abstract:
A Schottky diode is adjusted by implanting an implant species by way of a titanium silicide Schottky contact and driving the implant species into the underlying silicon substrate by a rapid anneal. The implant is at a low energy, (e.g. about 10 keV) and at a low dose (e.g. less than about 9E12 atoms per cm2) such that the barrier height is slightly increased and the leakage current reduced without forming pn junction and retaining the peak boron concentration in the titanium silicide layer.
Abstract translation:通过用硅化钛肖特基接触注入植入物种并通过快速退火将植入物种驱动到下面的硅衬底中来调节肖特基二极管。 植入物处于低能量(例如约10keV)和低剂量(例如小于约9E12原子/ cm 2),使得势垒高度略微增加,并且漏电流减小而不形成pn结,并且 保留钛硅化物层中的峰值硼浓度。
Abstract:
A method for producing a semiconductor component is proposed. The method includes providing a semiconductor body having a first surface; forming a mask on the first surface, wherein the mask has openings for defining respective positions of trenches; producing the trenches in the semiconductor body using the mask, wherein mesa structures remain between adjacent trenches; introducing a first dopant of a first conduction type using the mask into the bottoms of the trenches; carrying out a first thermal step; introducing a second dopant of a second conduction type, which is complementary to the first conduction type, at least into the bottoms of the trenches; and carrying out a second thermal step.
Abstract:
A schottky diode of the trench variety which includes a trench termination having a thick insulation layer that is thicker than the insulation layer inside the trenches in its active region.
Abstract:
A fabrication process for a trench Schottky diode with differential oxide thickness within the trenches includes forming a first nitride layer on a substrate surface and subsequently forming a plurality of trenches in the substrate including, possibly, a termination trench. Following a sacrificial oxide layer formation and removal, sidewall and bottom surfaces of the trenches are oxidized. A second nitride layer is then applied to the substrate and etched such that the second nitride layer covers the oxide layer on the trench sidewalls but exposes the oxide layer on the trench bottom surfaces. The trench bottom surfaces are then re-oxidized and the remaining second nitride layer then removed from the sidewalls, resulting in an oxide layer of varying thickness being formed on the sidewall and bottom surfaces of each trench. The trenches are then filled with a P type polysilicon, the first nitride layer removed, and a Schottky barrier metal applied to the substrate surface.
Abstract:
A trench schottky diode which includes a thin insulation layer on the sidewalls of its trenches and a relatively thicker insulation layer at the bottoms of its trenches.
Abstract:
A Merged P-i-N Schottky device in which the oppositely doped diffusions extend to a depth and have been spaced apart such that the device is capable of absorbing a reverse avalanche energy comparable to a Fast Recovery Epitaxial Diode having a comparatively deeper oppositely doped diffusion region.
Abstract:
A fabrication process for a Schottky barrier structure includes forming a nitride layer directly on a surface of an epitaxial (“epi”) layer and subsequently forming a plurality of trenches in the epi layer. The interior walls of the trenches are then deposited with a final oxide layer without forming a sacrificial oxide layer to avoid formation of a beak bird at the tops of the interior trench walls. A termination trench is etched in the same process step for forming the plurality of trenches in the active area.
Abstract:
A method for producing a semiconductor component is proposed. The method includes providing a semiconductor body having a first surface; forming a mask on the first surface, wherein the mask has openings for defining respective positions of trenches; producing the trenches in the semiconductor body using the mask, wherein mesa structures remain between adjacent trenches; introducing a first dopant of a first conduction type using the mask into the bottoms of the trenches; carrying out a first thermal step; introducing a second dopant of a second conduction type, which is complementary to the first conduction type, at least into the bottoms of the trenches; and carrying out a second thermal step.