Abstract:
The present invention relates to a synchronous self timed memory device. The device includes a plurality of memory cells forming a cell array, at least one local decoder interfacing with the cell array, at least one local sense amplifier and at least one local controller. The local sense amplifier interfaces with at least the decoder and cell array, and is adapted to precharge and equalize at least one line coupled thereto. The local controller interfaces with and coordinates the activities of at least the local decoder and sense amplifier.
Abstract:
The present invention relates to a system and method for applying a stress to a hierarchical memory structure in parallel, testing the memory structure for weak defects. The present invention includes writing a logic 0 into all the memory cells in a memory structure. All the high address predecoded lines and alternating predecoded lines for the lowest address are enabled. A voltage drop between neighboring wordlines and bitlines is affected. A logic I is written into all the memory cells in the memory structure. An opposite voltage polarity is caused on the bitlines due to the logic 1 in the memory cells. A reverse voltage polarity stress is achieved on the wordlines by flipping the state of the lowest predecoded line (i.e., by changing the input address corresponding to that line.
Abstract:
The present invention relates to a system and method for increasing the manufacturing yield of a plurality of memory cells used in cell arrays. A programmable fuse, having both hardware and software elements, is used with the plurality of memory cells to indicate that at least one memory cell is unusable and should be shifted out of operation. The software programmable element includes a programmable register adapted to shift in an appropriate value indicating that at least one of the memory cells is flawed. The hardware element includes a fuse gated with the programmable register. Shifting is indicated either by software programmable fuse or hard fuse. Soft fuse registers may be chained together forming a shift register.
Abstract:
The present invention relates to a system and method for increasing the manufacturing yield of a plurality of memory cells used in cell arrays. A programmable fuse, having both hardware and software elements, is used with the plurality of memory cells to indicate that at least one memory cell is unusable and should be shifted out of operation. The software programmable element includes a programmable register adapted to shift in an appropriate value indicating that at least one of the memory cells is flawed. The hardware element includes a fuse gated with the programmable register. Shifting is indicated either by software programmable fuse or hard fuse. Soft fuse registers may be chained together forming a shift register.
Abstract:
In one embodiment, a CAM is provided that includes; a plurality of memory cells grouped to store a word, wherein the memory cells are organized into a plurality of ripple groups, each ripple group including a complex logic gate configured to determine whether a stored content for the ripple group's memory cells matches a corresponding portion of a comparand word if an enable input for the ripple group is asserted, each complex logic gate asserting an output if the determination indicates a match, the ripple groups being arranged from a first ripple group to a last ripple group such that the output from the first ripple group's complex logic gate functions as the enable input for a second ripple group's complex logic gate and so on such that an output from a next-to-last ripple group's complex logic gate functions as the enable input for the last ripple group's complex logic gate.
Abstract:
The present invention relates to a system and method for processing the read and write operations in a memory architecture. The system processing the read and write operations includes at least one local memory block and a synchronously controlled global controller coupled to the local memory block and adapted to extend the high portion of a clock pulse. The method for processing the read and write operations includes skewing a clock pulse using at least one word line interfacing with the global controller.
Abstract:
A digital memory system (30) includes a memory cell (10), a bit line (12), a voltage generator (320) and a controller (90). The controller is arranged to store a predetermined logical value in the cell by generating a series of the operating voltages beginning with the first voltage and continuing with successively larger operating voltages greater the first voltage. The voltages are transmitted to the cell from the voltage generator. After each transmittal of one of the series of operating voltages, the controller causes at least a portion of the charge stored in the cell to flow in the bit line. The controller determines whether the predetermined one of the logical values has been stored in the cell in response to the flow of charge. The controller terminates transmittal of the series of operating voltages to the cell in the event that the predetermined one of the logical states has been stored or in the event that one of the series of successively larger operating voltages equals the second voltage.
Abstract:
The present invention relates to a system and method for increasing the manufacturing yield of a plurality of memory cells used in cell arrays. A programmable fuse, having both hardware and software modes, is used with the plurality of memory cells to indicate that at least one memory cells is unusable and should be shifted out of operation. The software mode comprises a software programmable element adapted to shift in an appropriate value indicating that at least one of the memory cells is flawed. The hardware mode comprises a hardware element adapted to indicate the at least one memory cell is unusable and is gated with the software programmable element. The hardware and software modes act autonomously
Abstract:
The present invention relates to a system and method for processing the read and write operations in a memory architecture. The system processing the read and write operations includes at least one local memory block and a synchronously controlled global controller coupled to the local memory block and adapted to extend the high portion of a clock pulse. The method for processing the read and write operations includes skewing a clock pulse using at least one word line interfacing with the global controller.
Abstract:
The present invention includes an active pixel sensor that detects optical energy and generates an analog output that is proportional to the optical energy. In embodiments, the active pixel sensor can be implemented in a standard CMOS process, without the need for a specialized optical process. The active pixel sensor includes a reset FET, a photo-diode, a source follower, and a current source. The photo-diode is coupled to the source of the reset FET at a discharge node. The drain of the reset FET is couple to a power supply VDD. The discharge node is also coupled to the gate input of the source follower, the output of which is coupled to output node. In embodiments, shallow trench isolation is inserted between the active devices that constitute the photo-diode, the source follower, or the current source, where the shallow trench isolation reduces leakage current between these devices. As a result, dark current is reduced and overall sensitivity is improved. This enables the active pixel sensor to be integrated on a single substrate fabricated with conventional CMOS processing.