Abstract:
A recombinant DNA construct comprising a polynucleotide encoding an ODP1 polypeptide operably linked to a sucrose synthase 2 promoter where this construct can be used to increase oil content in the seeds of a cruciferous oilseed plant while maintaining normal germination is disclosed. A method for increasing oil content in the seeds of a cruciferous oilseed plant while maintaining normal germination using this construct is also disclosed.
Abstract:
Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding delta-9 elongases along with a method of making long-chain polyunsaturated fatty acids (PUFAs) and using these delta-9 elongases in plants.
Abstract:
Oilseed plants which have been transformed to produce arachidonic acid, recombinant constructs used in such transformations, methods for producing arachidonic acid in a plant are described and uses of oils and seeds obtained from such transformed plants in a variety of food and feed applications are described.
Abstract:
Engineered strains of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 10% arachidonic acid (ARA, an ω-6 polyunsaturated fatty acid) in the total oil fraction are described. These strains comprise various chimeric genes expressing heterologous desaturases, elongases and acyltransferases, and optionally comprise various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of ARA. Production host cells are claimed, as are methods for producing ARA within said host cells.
Abstract:
Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding delta-9 elongases along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using these delta-9 elongases in plants.
Abstract:
Transgenic soybean seed having increased total fatty acid content of at least 10% and altered fatty acid profiles when compared to the total fatty acid content of non-transgenic, null segregant soybean seed are described. DGAT genes from Yarrowia Lipolytica are used to achieve the increase in seed storage lipids.
Abstract:
The present invention relates to fungal Δ-15 fatty acid desaturases that are able to catalyze the conversion of linoleic acid (18:2, LA) to alpha-linolenic acid (18:3, ALA). Nucleic acid sequences encoding the desaturases, nucleic acid sequences which hybridize thereto, DNA constructs comprising the desaturase genes, and recombinant host plants and microorganisms expressing increased levels of the desaturases are described. Methods of increasing production of specific omega-3 and omega-6 fatty acids by over-expression of the Δ-15 fatty acid desaturases are also described herein.
Abstract:
The present invention relates to Δ9 elongases, which have the ability to convert linoleic acid (LA; 18:2 ω-6) to eicosadienoic acid (EDA; 20:2 ω-6) and/or α-linolenic acid (ALA; 18:3 ω-3) to eicosatrienoic acid (ETrA; 20:3 ω-3). Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding Δ9 elongases along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using these Δ9 elongases in oleaginous yeast are disclosed.
Abstract:
Oilseed plants which have been transformed to produce arachidonic acid, recombinant constructs used in such transformations, methods for producing arachidonic acid in a plant are described and uses of oils and seeds obtained from such transformed plants in a variety of food and feed applications are described.
Abstract:
The present invention relates to Δ9 elongases, which have the ability to convert linoleic acid [18:2, LA] to eicosadienoic acid [20:2, EDA]. Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding Δ9 elongase along with methods of making long-chain polyunsaturated fatty acids (PUFAs) using these Δ9 elongases in plants and oleaginous yeast are disclosed.