Abstract:
A process is disclosed for regenerating a catalyst used in a process for synthesizing hydrocarbons. The synthesis process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. The regeneration process involves contacting a deactivated Fischer-Tropsch catalyst with a regeneration gas under regeneration-promoting conditions that include a pressure lower than the mean Fischer-Tropsch reaction pressure, for a period of time sufficient to reactivate the Fischer-Tropsch catalyst.
Abstract:
A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200° C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200° C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.
Abstract:
An online device and method for predicting at least one fluid flow parameter in a process (which comprises a bounded flow domain having disposed therein a pre-determined matrix) includes a computer and/or process steps whereby: (i) a memory receives a database, the database comprising location information for a plurality of nodes or particle pathways in the matrix; (ii) input data is received from the process, and (iii) the at least one fluid flow parameter is calculated from the database and the input data. Preferably, structure and/or process steps are provided to adjust the database in the event that the input data does not correspond with at least one pre-determined flow state.
Abstract:
This invention relates to methods for reacting a hydrocarbon, molecular oxygen, and optionally water and/or carbon dioxide, to form synthesis gas. The preferred embodiments are characterized by delivering a substochiometric amount of oxygen to each of a multitude of reaction zones, which allows for optimum design of the catalytic packed bed and the gas distribution system, and for the optimization and control of the temperature profile of the reaction zones. The multitude of reaction zones may include a series of successive fixed beds, or a continuous zone housed within an internal structure having porous, or perforated, walls, through which an oxygen-containing stream can permeate. By controlling the oxygen supply, the temperatures, conversion, and product selectivity of the reaction can be in turn controlled and optimized. Furthermore the potential risks of explosion associated with mixing hydrocarbon and molecular oxygen is minimized with increased feed carbon-to-oxygen molar ratios.
Abstract:
The present invention relates to a process for the preparation of synthesis gas (i.e., a mixture of carbon monoxide and hydrogen), typically labeled syngas. More particularly, the present invention relates to a regeneration method for a syngas catalyst. Still more particularly, the present invention relates to the regeneration of syngas catalysts using a re-dispersion technique. One embodiment of the re-dispersion technique involves the treatment of a deactivated syngas catalyst with a re-dispersing gas, preferably a carbon monoxide-containing gas such as syngas. If necessary, the catalyst is then exposed to hydrogen for reduction and further re-dispersion.
Abstract:
The present invention provides methods of suppressing the activation of Peroxisome Proliferator-Activated Receptor gamma in a mammalian body by administering an effective amount of bisphenol A diglycidyl ether to a mammal, methods of suppressing the accumulation of fat in the mammalian fat cell or adipose tissue by administering an effective amount of bisphenol A diglycidyl ether to a mammal, methods of preventing or alleviating mammalian obesity by administering an effective amount of bisphenol A diglycidyl ether to a mammal, bisphenol A diglycidyl ether for use as an active pharmaceutical substance or composition for the treatment of obesity, and uses of bisphenol A diglycidyl either for the preparation of a pharmaceutical composition for the treatment of obesity.
Abstract:
A gasket assembly and method of making same from at least two gasket structures provides a sufficiently leak-proof seal without the use of a fluid sealing or caulking medium. The first gasket has a contact area on a major surface which includes an array of peaks and valleys which is periodic in two dimensions. The second gasket has an end surface with a contact area which includes an array of valleys and peaks which is periodic in two dimensions. When the peaks and valleys on the contact area of the major surface of the first gasket are engaged with the valleys and peaks on the end surface of the second gasket, the peaks and valleys allow for shift along the x-axis, y-axis and z-axis, accommodating any misalignment of the gaskets within a predetermined stack-up error and thereby providing proper engagement to yield a substantially leak-proof seal.
Abstract:
An electromagnetic lifting device is provided with a pole piece of tapered or conical configuration extending outwardly from the load contacting surface of the magnet body. The tapered or conical configuration of the pole piece extends the effective magnetic flux pattern outwardly of the magnet body and also enables the pole piece to penetrate more readily into a collection of loose ferrous articles which are to be lifted.