Abstract:
Disclosed is an electrical connector having a substrate and movable electrical contacts which are mounted to the substrate and extend a distance D from the substrate. A layer of compressible material (such as a foam or elastomeric material) is positioned on the substrate adjacent at least some of the electrical contacts and ideally has an uncompressed thickness slightly greater than the distance D to provide for protection of the electrical contacts. When a mating electrical device such as an electrical connector or other circuit member is mated to the electrical connector with its electrical contacts and its layer of compressible material, the layer of compressible material is compressed to a thickness less than the distance D, allowing the contacts to make a suitable electrical interconnection to the mating electrical device. The compressible material may be selected which has a force-to-compression plot which includes at least one inflection, defining a first region on one side of the inflection where a given increment of force provides a larger increment of compression and a second region on the other side of the inflection where the same increment of compressive force provides a substantially smaller increment of compression. The compressible material can function to prevent damage to the movable electrical contacts from handling, packing, shipping, assembly, testing, connection and/or mating of the connector.
Abstract:
A method is provided for manufacturing removable contact structures on the surface of a substrate to conduct electricity from a contact member to the surface during electroprocessing. The method comprises forming a conductive layer on the surface. A predetermined region of the conductive layer is selectively coated by a contact layer so that the contact member touches the contact layer as the electroprocessing is performed on the conductive layer.
Abstract:
The present invention relates to a method for treating spent tin or tin/lead stripping solution used in the electronic industry, particularly in the manufacture of printed circuit boards or a lead frames. Said method comprises (i) electrolytically reducing copper ions in the solution to copper at a low temperature; (ii) electrolytically oxidizing Sn2+ and Pb2+ in the solution at a high temperature to form solid tin and lead oxides and hydroxides; (iii) separating solid tin and lead oxides and hydroxides from the solution; (iv) dissolving tin and lead oxides and hydroxides obtained in step (iii) in a strong alkali or acidic solution; and (v) electrolytically reducing the alkali or acidic solution obtained in step (iv) at a high temperature to recover metallic tin and lead. Also, the filtrate obtained in step (iii) above is useful for preparing fresh tin or tin/lead stripping solution.
Abstract:
Flexible leads for making electrical connection in microelectronic components includes two metallic layers. The structural or core layer of the lead is formed having a hardness greater than the hardness of the second layer. The relative hardness between the first and second layers is achieved by controlling the grain size during deposition of the respective layers from an electroless or electroplating bath.
Abstract:
Metal leads are formed on a copper conductive layer by applying a first resist and a main resist over the first resist, and forming aligned openings in these resist. A bottom layer of cover metal such as gold is plated onto the copper conductive layer in these openings, followed by a principal metal such as copper. The main resist is then removed so as to expose edges of the principal metal layer. A jacket of cover metal is plated onto the exposed edges and surfaces of the principal metal layer. During this stage, the first resist prevents deposition of the cover metal except on the leads. The jacket merges with the bottom layer of cover material, so as to form a continuous coating extending around the perimeters of the leads. The first resist is removed, and the conductive layer is etched away. The cover metal protects the principal metal during the etching stage.