Abstract:
There are disclosed racemic or enantiomerically enriched 3- or 4-substituted piperidine compounds represented by the following structural formula (I): or any of their isomers, or pharmaceutically acceptable salts thereof. Also disclosed are pharmaceutical compositions containing the subject compounds. The subject compounds are useful for the treatment of diseases of the central nervous system, particularly depression, anxiety and pain disorder.
Abstract:
The present invention discloses a dispersant for carbon nanotubes having excellent dispersion ability and to a carbon nanotube composition including the dispersant. In the dispersant, the heads and tails of the dispersant are regioregularly arranged in one direction, and the structural properties of the dispersant are controlled such that the ratio of heads to tails is 1 or more, thereby effectively stabilizing and dispersing carbon nanotubes in various dispersion media, such as an organic solvent, water, a mixture thereof and the like, compared to conventional dispersants.
Abstract:
Disclosed are an electrode having a porous active coating layer, a manufacturing method thereof and an electrochemical device containing the same. The electrode having a porous active coating layer according to the present invention may be useful to enhance peeling and scratch resistances of the porous active layer and improve a lamination characteristic toward the porous active layer by introducing a porous active layer onto a porous substrate having pores, the porous active layer having heterogeneity of morphology toward a thickness direction in which a content ratio of the binder polymer/inorganic particles present in a surface layer is higher than that of the binder polymer/inorganic particles present inside the surface layer. Accordingly, the stability and performances of the battery can be improved at the same time since the detachment of the inorganic particles from the porous active layer may be reduced during the assembly process of the electrochemical device.
Abstract:
A method of directly growing graphene of a graphene-layered structure, the method including ion-implanting at least one ion of a nitrogen ion and an oxygen ion on a surface of a silicon carbide (SiC) thin film to form an ion implantation layer in the SiC thin film; and heat treating the SiC thin film with the ion implantation layer formed therein to graphenize a SiC surface layer existing on the ion implantation layer.
Abstract:
Provided are a graphene pattern and a process of preparing the same. Graphene is patterned in a predetermined shape on a substrate to form the graphene pattern. The graphene pattern can be formed by forming a graphitizing catalyst pattern on a substrate, contacting a carbonaceous material with the graphitizing catalyst and heat-treating the resultant.
Abstract:
An optical pickup device is provided. The device includes a semiconductor laser light source which outputs linearly-polarized light having an elliptical shape, an objective lens which focuses light outputted from the semiconductor laser light source, forming an optical spot on an optical disc; and a polarization plate which is disposed placed on an optical path between the semiconductor laser light source and the objective lens, and which polarizes the light outputted from the semiconductor laser light source and transmits elliptically-polarized light, wherein the polarization plate is disposed such that a major axis of the elliptical polarization of the light transmitted by the polarization plate is parallel to or perpendicular to a major axis of the elliptical shape of the light.
Abstract:
A design for an organic light-emitting display device that increases capacitor capacity and increases aperture ratio by forming an initializing voltage electrode on a different layer than an electrode of the capacitor and forming only one via hole for an entire set of three sub-pixels. One of the source electrodes and the drain electrodes of switching transistors for the three sub-pixels are formed in common, along with the gate electrodes of the switching transistors.
Abstract:
There are disclosed racemic or enantiomerically enriched 3- or 4-substituted piperidine compounds represented by the following structural formula (I): or any of their isomers, or pharmaceutically acceptable salts thereof. Also disclosed are pharmaceutical compositions containing the subject compounds. The subject compounds are useful for the treatment of diseases of the central nervous system, particularly depression, anxiety and pain disorder
Abstract:
A carbon nanotube (CNT) film having a transformed substrate structure and a manufacturing method thereof. The CNT film includes a transparent substrate, a plurality of three-dimensional (3D) structures formed distant from each other on the transparent substrate, and carbon nanotubes (CNTs) deposited on the transparent substrate where the plurality of 3D structures is not formed. The method includes forming a plurality of 3D structures distant from each other on a transparent substrate, and depositing a CNT solution on the substrate with the plurality of 3D structures formed thereon, wherein the CNT solution is deposited into a portion of the transparent substrate where the 3D structures are not formed. Thus, the deposition mechanism of the CNT solution is controlled to thereby increase the transparency of the CNT film and the electrical conductivity of an electrode including the CNT film.
Abstract:
A method of manufacturing a semiconductor device includes forming a plurality of preliminary gate structures, forming a capping layer pattern on sidewalls of the plurality of preliminary gate structures, and forming a blocking layer on top surfaces of the plurality of preliminary gate structures and the capping layer pattern such that a void is formed therebetween. The method also includes removing the blocking layer and an upper portion of the capping layer pattern such that at least the upper sidewalls of the plurality of preliminary gate structures are exposed, and a lower portion of the capping layer pattern remains on lower sidewalls of the preliminary gate structures. The method further includes forming a conductive layer on at least the upper sidewalls of the plurality of preliminary gate structures, reacting the conductive layer with the preliminary gate structures, and forming an insulation layer having an air gap therein.