摘要:
A probe holder in which the probe needle has a slight horizontal offset under the action of a vertical force, includes a probe holder for a probe needle, wherein the holder is adapted, for fastening and electrical contact-connection, on a carrier device of a test apparatus and has a holder arm having a needle holder at the free end thereof to fasten the probe needle, and a fastening arm for connecting the probe holder to the carrier device. The holder arm and the fastening arm are connected to one another by an articulated joint, whereby horizontal offset of the needle tip on account of external forces can be reduced or even prevented by increasing the radius of the yielding movement of the probe needle.
摘要:
A probe for temporarily electrically contacting a solar cell for testing purposes, has at least one elastic, electrically conductive contact element for producing the electrical contact, at least one reference sensor for indicating a distance of the contact element to an external reference surface using an electrical signal of the reference sensor, and a mounting plane to which the tip of the contact element is oriented. The probe ensures a secure electrical contact of the solar cell in a testing station with minimal mechanical stress, and is also suitable for use in an industrial continuous production method.
摘要:
In a method and an apparatus for measuring temperature-controlled electronic components in a test station, a component to be measured is held and positioned using a chuck, has a temperature-controlled and directed fluid flow applied to it and is electrically contact-connected using probes and is measured. The setting of the temperature of the component to the temperature at which the measurement is intended to be carried out is effected solely using a directed fluid flow at a defined temperature.
摘要:
The invention, which relates to a test apparatus with loading device which has a chuck, which is provided with a bearing surface for a test substrate and with a chuck drive, by means of which the chuck can be displaced with a working area, and which has a receiving means for receiving test substrates, which can be displaced from a working area of the chuck to a receiving position outside the working area, is based on the object of increasing the accuracy of the movement of the chuck. Moreover, in the case of test apparatus with a controlled atmosphere, a further object is to prevent the chuck from being exposed to the open-air atmosphere. This is achieved by virtue of the fact that a carriage, which can be displaced between a position close to the chuck, in which the chuck is located in a position inside the working area, and the receiving position, is provided, which carriage is provided with a holder, in which the test substrate can be at least indirectly inserted in such a way that the test substrate, when the carriage is in the position close to the chuck, is located above the chuck. The holder and the chuck can move vertically relative to one another when the carriage is in the position close to the chuck.
摘要:
A substrate-holding device is designed as a one-piece ceramic element having a number of variably heavily doped layer regions. At least one layer region is a conductive region and at least one layer region is an insulative region. A multilayer chuck structure is thereby formed which does not exhibit mechanical surface interfaces between the layers.
摘要:
A method for perpendicular positioning of a probe card relative to a test substrate, includes storing a separation position approached in a first positioning step as a distance between the needle tips of the probe card and the substrate, storing a contact position approached in a second positioning step until the probe card contacts the substrate, and displaying an image of the needle tips. For avoiding erroneous operation after a probe card has been changed, when imaging the needle tips, the stored contact position is imaged and is changed until presentation of this contact position corresponds to actual height of the tips appropriate for the respective probe card and this setting is then stored as a new contact position. A display device presents the needle tips and the stored contact position and is connected to a memory, a recording device and an input device which changes the contact position.
摘要:
A method for perpendicular positioning of a probe card relative to a test substrate, includes storing a separation position approached in a first positioning step as a distance between the needle tips of the probe card and the substrate, storing a contact position approached in a second positioning step until the probe card contacts the substrate, and displaying an image of the needle tips. For avoiding erroneous operation after a probe card has been changed, when imaging the needle tips, the stored contact position is imaged and is changed until presentation of this contact position corresponds to actual height of the tips appropriate for the respective probe card and this setting is then stored as a new contact position. A display device presents the needle tips and the stored contact position and is connected to a memory, a recording device and an input device which changes the contact position.
摘要:
A chuck with triaxial construction comprises a receiving surface for a test substrate and arranged below the receiving surface: an electrically conductive first surface element, an electrically conductive second surface element electrically insulated therefrom, and an electrically conductive third surface element electrically insulated therefrom, and, between the first and the second surface element, a first insulation element and, between the second and the third surface element, a second insulation element. A chuck for very low current measurements which can be used to prevent the occurrence of leakage currents and a triboelectric charge and which is configured favourably in terms of production, is achieved because at least one of the electrically conductive surface elements is mechanically connected to at least one insulation element and has an elasticity that compensates for an expansion difference resulting from differences in different coefficients of expansion between a respective surface element and an adjoining insulation element.
摘要:
A method of contacting a contact area with the tip of a contact needle (contact tip) in a prober and the arrangement of such a prober, is based on the object of ensuring reliable contacting and direct observation of the establishment of the contact between the contact tip and the contact area when contacting contact pads of small dimensions. The prober substantially includes a base frame with a movement device including a clamping fixture for receiving a semiconductor wafer and also contact needles, which are arranged opposite the free surface of the semiconductor wafer. The contacting of the contact tips initially requires a horizontal positioning of the semiconductor wafer, so that the contact area and the contact tip are one above the other and at a distance from each other, and subsequently moving vertically in the direction of the contact tip, until a contact of the contact tips with the contact area is established. The object is achieved by the vertical movement of the semiconductor wafer until the end position is reached being directly observed in a horizontal direction of observation and, for this purpose, an observation device is arranged in such a way that the observation axis runs in the spacing above the free wafer surface.
摘要:
A method is provided for increasing the accuracy of the positioning of a first object relative to a second object. The method overcomes the disadvantageous influence of thermal drift between a first and a second object during a positioning of a first object on a second object. The method finds applications in manufacturing, for example, in the manufacturing of semiconductor components. The method utilizes recognition of structures on the second object which have a minimum structure width. At a first instant, using one recognition procedure, the first object is positioned on the second object in a desired position. The relative displacement of the two objects is determined at the first instant and on at least one subsequent instant. A second recognition procedure may be used for this purpose. The second recognition procedure may have a resolution accuracy which is different than the resolution accuracy of the first resolution procedure. The second recognition procedure may be a pattern recognition method. The relative displacement determined at the second instant is used to correct the positioning of the first and second objects as necessary to maintain a desired position of the two objects.