摘要:
A method for perpendicular positioning of a probe card relative to a test substrate, includes storing a separation position approached in a first positioning step as a distance between the needle tips of the probe card and the substrate, storing a contact position approached in a second positioning step until the probe card contacts the substrate, and displaying an image of the needle tips. For avoiding erroneous operation after a probe card has been changed, when imaging the needle tips, the stored contact position is imaged and is changed until presentation of this contact position corresponds to actual height of the tips appropriate for the respective probe card and this setting is then stored as a new contact position. A display device presents the needle tips and the stored contact position and is connected to a memory, a recording device and an input device which changes the contact position.
摘要:
In a method and devices for forming a temporary electrical contact to a solar cell for testing purposes, probes form a contact to the electrode terminals of a solar cell held by a sample holder. The probes are held by a probe holder and exhibit an elastic, electrically conductive contact element and at least one reference sensor. In order to form a contact, the solar cell and the probes are positioned in relation to each other, and then a probe is placed on an electrode terminal of the solar cell. To this end, a feed motion of the probe is carried out until a reference sensor of the probe generates a reference signal upon reaching a predefined distance. Then the feed motion is continued by a predefined path that goes beyond the contact element making contact with the electrode terminal, in order to carry out an overtravel.
摘要:
A method and an apparatus are provided which make it possible, when testing chips arranged on a wafer, to be able to test optionally both additional components arranged on horizontal boundary lines and on vertical boundary lines. The additional components arranged on horizontal boundary lines are tested in a first position of the wafer. For testing the additional components arranged on vertical boundary lines, the wafer is rotated about its vertical axis through 90° relative to the first position into a second position. The apparatus comprises a housing and, in the housing, at least one test probe for making contact with an electronic component, a chuck for moving the wafer and a rotatably mounted additional plate operatively connected to the chuck.
摘要:
A process is provided for inspection of a variety of structures on the basis of a golden template, that was attained by recording and statistical analysis of greyscale pictures and is compared to the greyscale picture of the structure to be evaluated based on position. The underlying task is to report any such inspection process, with which a positioning of the test structure relative to the golden template and a structure detection with sub-pixel accuracy is carried out. In positioning of each further structure to be recorded, which follows a first recorded structure, the further structure is fundamentally positioned in accordance with the first positioned structure, applicable characteristic values of the greyscale picture recorded in this position are determined and hence a degree of similarity is determined. On this basis, the position of further structures relative to the primary position are determined and corrected with sub-pixel accuracy, before a new greyscale picture is recorded, which forms the basis for further analysis.
摘要:
A test apparatuss for testing substrates at low temperatures has a chuck, which can be displaced in the working area by means of a chuck drive, the temperature of which can be controlled using heating and cooling means. The chuck has a receiving surface for receiving a test substrate and holding means for fixing a substrate carrier which receives the test substrate. Spatially and thermally defined test conditions are maintained with minimal energy and labor costs both at room temperatures and at low temperatures. This is achieved by providing a vacuum chamber which surrounds the working area of the chuck. The chuck is on one side thermally decoupled from the uncooled chuck drive and on the other side is thermally connected in a releasable manner to the test substrate. The cooled chuck and the cooled test substrate are shielded from the thermal radiation of the surrounding uncooled assemblies by means of a directly cooled thermal radiation shield.
摘要:
A method is provided for increasing the accuracy of the positioning of a first object relative to a second object. The method overcomes the disadvantageous influence of thermal drift between a first and a second object during a positioning of a first object on a second object. The method finds applications in manufacturing, for example, in the manufacturing of semiconductor components. The method utilizes recognition of structures on the second object which have a minimum structure width. At a first instant, using one recognition procedure, the first object is positioned on the second object in a desired position. The relative displacement of the two objects is determined at the first instant and on at least one subsequent instant. A second recognition procedure may be used for this purpose. The second recognition procedure may have a resolution accuracy which is different than the resolution accuracy of the first resolution procedure. The second recognition procedure may be a pattern recognition method. The relative displacement determined at the second instant is used to correct the positioning of the first and second objects as necessary to maintain a desired position of the two objects.
摘要:
In a method and an apparatus for measuring temperature-controlled electronic components in a test station, a component to be measured is held and positioned using a chuck, has a temperature-controlled and directed fluid flow applied to it and is electrically contact-connected using probes and is measured. The setting of the temperature of the component to the temperature at which the measurement is intended to be carried out is effected solely using a directed fluid flow at a defined temperature.
摘要:
A method is disclosed for measurement of wafers and other semiconductor components in a probe station, which serves for examination and testing of electronic components. The device under test is held by a chuck and at least one electric probe by a probe support and the device under test and the probe are selectively positioned relative to each other by a positioning device with electric drives and the device under test is contacted. The drive of the positioning device remains in a state of readiness until establishment of contact and is switched off after establishment of contact and before measurement of the device under test.
摘要:
A method is disclosed for measurement of wafers and other semiconductor components in a probe station, which serves for examination and testing of electronic components. The device under test is held by a chuck and at least one electric probe by a probe support and the device under test and the probe are selectively positioned relative to each other by a positioning device with electric drives and the device under test is contacted. The drive of the positioning device remains in a state of readiness until establishment of contact and is switched off after establishment of contact and before measurement of the device under test.
摘要:
A prober is described that is suitable for testing of semiconductor substrates under atmospheric conditions that deviate from ambient conditions. The prober includes a chuck for mounting of a semiconductor substrate and a probe holder for mounting of test tips for electrical contacting of the semiconductor substrate. The semiconductor substrate and test tips are arranged within a housing sealed relative to the surrounding atmosphere. The housing comprises two housing parts joined with a seal. The seal can be inflated with two different pressures and is less deformable at higher pressure. For testing of the semiconductor substrate, coarse positioning of the semiconductor substrate relative to the test tips occurs under atmospheric conditions and then fine positioning with the sealed housing and deformable seal before the lower deformability of the seal is produced at higher pressure in the seal and the semiconductor substrate is contacted by the test tips and tested.