Abstract:
Technology is discussed for allowing a wireless mobile device, such as a User Equipment (UE), to coordinate with a Radio Access Network, such as an Evolved-Universal Terrestrial Radio Access Network (E-UTRAN), to tear down a power intensive messaging connection, such as a Radio Resource Control (RRC) connection, to met needs of both the UE and the E-UTRAN. The UE can initiate the tear down process based on information at the UE about the potential need of the UE for the RRC connection and/or the state of the UE's battery charge. The E-UTRAN can then determine whether to grant the request based on the potential overhead involved. The determination can be important to the E-UTRAN because of the large overhead associated with frequent disconnection and re-establishment of the RRC connection. Upon receipt of an affirmative response, the UE can tear down the RRC connection to save battery power.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for managing state transitions of communication circuitries in wireless networks. Embodiments manage radio resource control (RRC) state transitions and/or discontinuous reception (DRX) state transitions. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of a mobile station and method for dynamically changing a sleep cycle are generally described herein. The mobile station is configured to dynamically switch a sleep cycle without deactivating a current power savings class (PSC). In some embodiments, the mobile station may generate a dynamic sleep-cycle switching message to request a change in the sleep cycle of the mobile station when changes in downlink traffic are detected. The dynamic sleep-cycle switching message may indicate either one of a plurality of predefined sleep cycles or may indicate parameters defining a new sleep cycle. This may allow the sleep cycle of the currently active PSC to be changed without deactivation.
Abstract:
Techniques are described for a device to request a new service flow for best effort (BE) category traffic to assign a priority to the new service flow. For example, a Traffic Priority parameter in a media access control (MAC) message can be used to transmit the priority level for a new BE category service flow. The MAC message can be an AAI DSA-REQ message (specified in IEEE 802.16m draft 9 (2010)). Either a base station or a mobile station can request a new service flow using the MAC message.
Abstract:
In one embodiment, a method is provided. The method of this embodiment provides detecting by a network controller a flush occurring on a host bus of a DM (“direct messaging”) packet to a memory from a first cache line associated with a first processor; obtaining and storing the DM packet at a second cache line associated with the network controller; and sending the DM packet over a network to a third cache line associated with a second processor.
Abstract:
Systems and techniques for cross-layer automated fault tracking and anomaly detection are described herein. Anomaly data may be obtained from a plurality of layers of a network. Elements of the anomaly data may be identified that correspond to a data flow of an application executing on the network. An artificial intelligence model may be trained using the elements of the anomaly data to generate an impact score for the application. The impact score may be generated for the application by evaluating current network metrics using the artificial intelligence model. An operational component of the network may be modified based on the impact score.
Abstract:
Disclosed are embodiments for adjusting a vehicle stopping point. The vehicle stopping point is a point between a route of the vehicle and a second route. in some embodiments, an adjustment to the stopping point is determined based on ranking secondary routes that are adjusted based on the adjusted vehicle stopping point. Tanking of the secondary routes is based, in sonic embodiments, on a score of segment(s) included in the secondary routes. In some cases, the ranking of the segments considers safety information associated with each of the segments.
Abstract:
A telecommunication network may operate to enable a wake up signals (WUSs) within the telecommunication network. A mobility management entity (MME) may estimate a coverage enhancement (CE) level of a user equipment (UE), determine, based on the CE level, a number of repetitions for a wake up signal (WUS) for the UE, and cause a WUS for UE to be transmitted to a radio access network (RAN) node corresponding to the UE. The RAN node may inform the MME that the RAN node has disabled the WUS feature, and may cause system information to be broadcast to UEs in IDLE mode, indicating that the WUS feature of the RAN node has been disabled. A UE may determine a paging occasion (PO) determine a maximum WUS duration, minimum offset, and start location of the WUS.
Abstract:
Devices and techniques for Information Centric Network (ICN) packet transmission control are described herein. An interest (or data) packet may be received at an ICN router. Here, the packet includes quality of service (QoS) information. For an interest packet, the ICN router creates a pending interest table (PIT) entry for the packet. The ICN router determines that it does not have a route for the packet. Thus, if it is an interest packet, there is no forward route in a forwarding information base (FIB). If it is a data packet, there is no corresponding PIT entry. However, after extracting the QoS information from the packet, the ICN router broadcasts the packet in accordance with the QoS information.
Abstract:
Embodiments of user equipment (UE) and methods for application-agnostic discontinuous reception (DRX) triggering are generally described herein. In some embodiments, a UE is configured to monitor buffer status history and traffic activity history, and trigger DRX mode activation based on the buffer status and the traffic activity history. In some embodiments, the UE may determine a probability, based on the buffer status history and the traffic activity history, that a level of traffic activity that cannot be handled during DRX mode would occur. In these embodiments, the UE may trigger DRX mode activation when the probability is below a threshold.