Abstract:
Capture compounds and collections thereof and methods using the compounds for the analysis of biomolecules are provided. In particular, collections, compounds and methods are provided for analyzing complex protein mixtures, such as the proteome. The compounds are multifunctional reagents that provide for the separation and isolation of complex protein mixtures. Automated systems for performing the methods also are provided.
Abstract:
Systems and methods for testing samples, particularly biological samples are provided. The system includes an instrument for detecting molecules in samples, and a processor that communicates with the instrument to provide results-based control of the instrument to effect assay-based judging. For example, a system, including software, is provided that directs and performs assays such as diagnostic assays that employ a mass spectrometer. The output of the system, rather than a mass spectrum or other raw data form, is the diagnostic outcome, such as a genotype.
Abstract:
The method and system for identifying a biological sample generates a data set indicative of the composition of the biological sample. In a particular example, the data set is DNA spectrometry data received from a mass spectrometer. The data set is denoised, and a baseline is deleted. Since possible compositions of the biological sample may be known, expected peak areas may be determined. Using the expected peak areas, a residual baseline is generated to further correct the data set. Probable peaks are then identifiable in the corrected data set, which are used to identify the composition of the biological sample. In a disclosed example, statistical methods are employed to determine the probability that a probable peak is an actual peak, not an actual peak, or that the data are too inconclusive to call.
Abstract:
The present invention relates to an assay and methods for determining the presence of pathogenic V. parahaemolyticus in a sample. Determination should be made by detector. Via the assay, rapid, real-time detection of V. parahaemolyticus is possible.
Abstract:
Fully automated modular analytical systems with integrated instrumentation for analysis of biopolymer samples, such as nucleic acids, proteins, peptides and carbohydrates, are provided. Analytical methods of detection and analysis, such as mass spectrometry, radiolabeling, mass tags, chemical tags and fluorescence chemiluminescence, are integrated with robotic technology and automated chemical reaction systems to provide a high-throughput, accurate Automated Process Line (APL).