摘要:
Improved assemblies, systems, and methods provide an MES processor for acquisition and processing of myoelectric signals from muscles, nerves, or central nervous system tissue, or any combination. The MES processor is sized and configured to be implanted subcutaneous a tissue region. The MES processor includes an electrically conductive case of a laser welded titanium material. Control circuitry is located within the case, the control circuitry including a rechargeable power source, a receive coil for receiving an RF magnetic field to recharge the power source, and a microcontroller for control of the MES processor. Improved assemblies, systems, and methods also provide an acquisition and processing system for sensing myoelectric signals from muscles, nerves, or central nervous system tissue, or any combination. The acquisition and processing system provides at least one electrically conductive surface, a lead connected to the electrically conductive surface, and an MES processor electrically connected to the lead.
摘要:
Improved assemblies, systems, and methods provide safeguarding against tissue injury during surgical procedures and/or identify nerve damage occurring prior to surgery and/or verify range of motion or attributes of muscle contraction during reconstructive surgery. A stimulation control device may incorporate a range of low and high intensity stimulation to provide a stimulation and evaluation of both nerves and muscles. A stimulation control device is removably coupled to a surgical device or is imbedded within the medical device to provide a stimulation and treatment medical device. A disposable hand held stimulation system includes an operative element extending from the housing, the housing includes a visual indication to provide feedback or status to the user.
摘要:
Improved assemblies, systems, and methods provide safeguarding against tissue injury during surgical procedures and/or identify nerve damage occurring prior to surgery and/or verify range of motion or attributes of muscle contraction during reconstructive surgery. A stimulation control device may incorporate a range of low and high intensity stimulation to provide a stimulation and evaluation of both nerves and muscles. A stimulation control device is removably coupled to a surgical device or is imbedded within the medical device to provide a stimulation and treatment medical device. A disposable hand held stimulation system includes an operative element extending from the housing, the housing includes a visual indication to provide feedback or status to the user.
摘要:
An implantable medical device having a liquid crystal polymer (LCP) housing. Circuitry is positioned within the housing to perform a predefined function, such as generate a stimulation waveform, or pump a fluid, or turn on a motor, for example. The circuitry may include a power source, and the power source may be a rechargeable power source.
摘要:
Improved assemblies, systems, and methods provide an implantable pulse generator for prosthetic or therapeutic stimulation of muscles, nerves, or central nervous system tissue, or any combination. The implantable pulse generator is sized and configured to be implanted subcutaneously in a tissue region. The implantable pulse generator includes an electrically conductive laser welded titanium case. Control circuitry is located within the case, and includes a primary cell or rechargeable power source, a receive coil for receiving an RF magnetic field to recharge the rechargeable power source, and a microcontroller for control of the implantable pulse generator. Improved assemblies, systems, and methods also provide a stimulation system for prosthetic or therapeutic stimulation of muscles, nerves, or central nervous system tissue, or any combination. The stimulation system provides at least one electrically conductive surface, a lead connected to the electrically conductive surface, and an implantable pulse generator electrically connected to the lead.
摘要:
Neuromuscular stimulation assemblies, systems, and methods make possible the providing of short-term therapy or diagnostic testing by providing electrical connections between muscles or nerves inside the body and stimulus generators or recording instruments mounted on the surface of the skin outside the body or worn or carried by the patient. The assemblies, systems, and methods include an electrode sized and configured for implantation in tissue, a percutaneous lead electrically coupled to the electrode, a carrier sized and configured to be carried by the patient and to hold a power source, an electronics pod removably carried on-board the carrier and including circuitry configured to generate a stimulation pulse, and an electrode connection element carried on-board the carrier that is electrically coupled to the electronics pod. Instructions furnished by a clinician or caregiver or physician prescribe the release and replacement of a disposable battery according to a prescribed battery replacement regime.
摘要:
Systems and methods screen and/or treat disorders of the body using neurostimulation. A trial system implants a temporary or permanent percutaneous lead and couples the lead to an external pulse generator. The external pulse generator supplies a prescribed stimulation regime through the lead to a targeted tissue region. If an improvement in the treated disorder is achieved, use of the trial system may be continued, or an implantable system may be implanted.
摘要:
Neuromuscular stimulation assemblies, systems, and methods make possible the providing of short-term therapy or diagnostic testing by providing electrical connections between muscles or nerves inside the body and stimulus generators or recording instruments mounted on the surface of the skin outside the body. Neuromuscular stimulation assemblies, systems, and methods may include a steerable introducer that defines an interior lumen sized and configured to shield a percutaneous electrode from contact with tissue during advancement to a desired position within tissue.
摘要:
Provided is a portable controller and associated method that provides a patient or caregiver the ability to recharge and alter the parameters of an implanted medical device, while allowing the patient substantially unobstructed mobility. To enable mobility, the controller may be worn on a belt or clothing. The controller also allows the patient to turn device stimulation on and off, check battery status, and to vary stimulation parameters within ranges that may be predefined and programmed by a clinician. The controller communicates with the medical device to retrieve information and make parameter adjustments using wireless telemetry, and it can send and receive information from several feet away from the implanted medical device. Charging of a battery contained in the implanted medical device is achieved via an inductive radio frequency link using a charge coil placed in close proximity to the medical device.
摘要:
The systems and methods provide effective neuromuscular stimulation to meet a host of different prosthetic or therapeutic objections. The systems and methods also provide convenience of operation, flexibility to meet different user-selected requirements, and transportability and ease of manipulation, that enhance the quality of life of the individual that requires chronic neuromuscular stimulation.