Abstract:
Metal cord with a plurality of concentric layers, of the type rubberized in situ, i.e. a cord that is rubberized from the inside, during its actual manufacture, with a rubber known as a filling rubber, in which all or some of the gaps situated between the wires of the cord contain a thermoplastic elastomer of the unsaturated type, particularly an unsaturated thermoplastic stirene (TPS) elastomer such as an SBS, SBBS, SIS or SBIS block copolymer for example. Such a thermoplastic elastomer, used in the molten state, presents no problems of parasitic stickiness if the filling rubber overspills out of the cord following manufacture; its unsaturated and therefore (co)vulcanizable nature makes it extremely compatible with the diene rubber matrices, notably natural rubber matrices as conventionally used as calendering rubber in the metal fabrics intended for reinforcing tires.
Abstract:
A load-bearing structure for a bearing support intended to be mounted on a rim inside a tire fitted on a vehicle to support the tread of the tire in the event of a loss of inflation pressure is provided. The load-bearing structure includes a base, a crown, and an annular body connecting the base and the crown. The body includes a plurality of partitions distributed regularly circumferentially, extending axially substantially from one side to the other of the body and radially from the base to the crown with a mean orientation relative to the radial direction of between 10 and 50 degrees, in that two circumferentially adjacent partitions exhibit contrary orientations relative to the radial direction and in that two adjacent partitions define with the base and/or the crown cavities in the form of triangles or trapezoids.
Abstract:
Composite reinforcer (R-2) that is self-adhesive, by curing, to a diene rubber matrix, which can be used as reinforcing element for a pneumatic tire, comprising: one or more reinforcing thread(s) (20), for example a carbon steel cord; a first layer (21) of a thermoplastic polymer, the glass transition temperature of which is positive, for example a polyamide, covering said thread, individually each thread or collectively several threads; a second layer (22) of a composition comprising a poly(p-phenylene ether) (“PPE”) and a functionalized diene elastomer bearing functional groups selected from epoxide, carboxyl, acid anhydride and acid ester groups, in particular an epoxidized SBR, covering the first layer (21). Process for manufacturing such a composite reinforcer and rubber article or semi-finished product, especially a pneumatic tire, incorporating such a composite reinforcer.
Abstract:
A pneumatic tire having pairs of shoulder section and bead section shear layers positioned on at least one axial side of the carcass layer. Examples include one or more of the shear layers constituted of an elastomeric fabric having elastomeric fibers woven in the fabric. Such fibers may be spandex fibers and the fabric may further be characterized as being woven additionally with nylon fibers in a tricot construction. Other embodiments include at least one of the shear layers constituted of a polyurethane type elastomer material having an MA1O of between 1 MPa and 350 MPa. Exemplary shoulder section and bead section shear layers in a pinch shocked region are opposite across an interior of the tire.
Abstract:
Composite reinforcer (R-2) capable of adhering directly to a diene rubber matrix, which can be used as reinforcing element for a tire, comprising: one or more reinforcing thread(s) (20), in particular a carbon steel cord; a first layer (21) of a thermoplastic polymer, the glass transition temperature of which is positive, in particular a 6,6 polyimide, covering individually said thread or each thread or collectively several threads; a second layer (22) of a composition comprising a poly(p-phenylene ether) (“PPE”) and a functionalized unsaturated thermoplastic stirene (“TPS”) elastomer, the glass transition temperature of which is negative, said elastomer bearing functional groups selected from epoxide, carboxyl, acid anhydride and acid ester groups, in particular an epoxidized SBS elastomer, covering the first layer (21). Process for manufacturing a composite reinforcer and rubber article or semi-finished product, especially a tire, incorporating such a composite reinforcer.
Abstract:
A composite reinforcer that can adhere directly to a diene rubber matrix is usable as a reinforcing element for a pneumatic tire. The composite reinforcer includes at least one reinforcing thread, such as a carbon steel cord. Covering each thread individually or several threads collectively is a layer of a thermoplastic polymer composition. The thermoplastic polymer composition includes at least one thermoplastic polymer have a glass transition temperature that is positive, a poly(p-phenylene ether) (PPE), and a functionalized unsaturated thermoplastic styrene (TPS) elastomer having a glass transition temperature that is negative. The TPS elastomer includes a functional group selected from: an epoxide group, a carboxyl group, an acid anhydride group, and an ester group. A process for manufacturing such a composite reinforcer is presented, as well as a process for producing a rubber article, especially a pneumatic tire, incorporating such a composite reinforcer.
Abstract:
Method of manufacturing a multi-layer metal cord having a plurality of concentric layers of wires, comprising one or more inner layer(s) and an outer layer, of the type “rubberized in situ. The method includes the following steps: at least one step of sheathing at least one inner layer with the rubber or the rubber composition by passing through at least one extrusion head; and an assembling step in which the wires of the outer layer are assembled around the inner layer adjacent to it, in order to form the multi-layer cord thus rubberized from the inside. The rubber is an unsaturated thermoplastic elastomer extruded in the molten state, preferably a thermoplastic elastomer of the thermoplastic stirene (TPS) elastomer type such as an SBS, SBBS, SIS or SBIS block copolymer for example.
Abstract:
Composite reinforcer (R-2) that is self-adhesive, by curing, to a diene rubber matrix, which can be used as reinforcing element for a pneumatic tire, comprising: one or more reinforcing thread(s) (20), for example a carbon steel cord; a first layer (21) of a thermoplastic polymer, the glass transition temperature of which is positive, for example a polyamide, covering said thread, individually each thread or collectively several threads; a second layer (22) of a composition comprising a poly(p-phenylene ether) (“PPE”) and a functionalized diene elastomer bearing functional groups selected from epoxide, carboxyl, acid anhydride and acid ester groups, in particular an epoxidized SBR, covering the first layer (21). Process for manufacturing such a composite reinforcer and rubber article or semi-finished product, especially a pneumatic tire, incorporating such a composite reinforcer.
Abstract:
Method of manufacturing a multi-layer metal cord having a plurality of concentric layers of wires, comprising one or more inner layer(s) and an outer layer, of the type “rubberized in situ.” The method includes the following steps: at least one step of sheathing at least one inner layer with the rubber or the rubber composition by passing through at least one extrusion head; and an assembling step in which the wires of the outer layer are assembled around the inner layer adjacent to it, in order to form the multi-layer cord thus rubberized from the inside. The rubber is an unsaturated thermoplastic elastomer extruded in the molten state, preferably a thermoplastic elastomer of the thermoplastic stirene (TPS) elastomer type such as an SBS, SBBS, SIS or SBIS block copolymer for example.
Abstract:
A pneumatic tyre with a built-in self-sealing layer includes an outer rubbery tread, a carcass reinforcement, a gastight layer located at an inside position relative to the carcass reinforcement, a separable protective layer positioned innermost, and a self-sealing layer adjacent to the separable protective layer and located at an inside position relative to the gastight layer. The separable protective layer is a thermoplastic film that includes at least one fluoropolymer.