Abstract:
Provided are a method and apparatus for increasing transmission capacity for large-capacity high-speed signal transmission in an optical transport network (OTN). A method and apparatus for increasing transmission capacity are needed, which can transmit a large-capacity high-speed signal in order to transmit a signal through a united OTN by adapting signals from various tributary signal networks which have been independently operated for voice, image, or data transmission. Although various types of techniques such as Time Division Multiplexing (TDM), Wavelength Division Multiplexing (WDM), and an optical Printed Circuit Board (PCB) method have been performed, the techniques have various limitations. Therefore, a method and apparatus is provided for embodying a large-capacity optical transmission network, which overcome the limitations by using a Virtual Concatenation (VC) method.
Abstract:
An active alignment method for a multi-channel optical transmitter and receiver is disclosed. The active alignment method for a multi-channel optical transmitter includes actively aligning an optical signal generator with an optical multiplexer based on optical outputs of a plurality of wavelengths from the optical signal generator and an optical output of the optical multiplexer, and actively aligning the optical multiplexer with a fiber optic coupler based on an optical output of the optical multiplexer and an optical output of the fiber optic coupler.
Abstract:
An optical transceiver for optimizing transfer characteristic of an optical interferometer and a method of optimizing transfer characteristic of an optical interferometer of an optical transceiver are provided. It is possible to improve the transmission performance of the optical transceiver by optimizing the transfer characteristic of the optical interferometer included in an optical receiver of the optical transceiver which transmits and receives an optical signal in a phase modulation scheme.
Abstract:
A method and apparatus for generating an optical short pulse for quantum cryptography communication is provided. The apparatus is incorporated as a module in an electronic integrated circuit chip, such as a field programmable gate array (FPGA) chip which performs quantum key distribution post-processing and open channel optical signal processing of a quantum cryptography system. The apparatus generates an electrical short pulse and converts the electrical short pulse into an optical short pulse, and it is possible to manufacture a compact apparatus for generating an optical short pulse for quantum cryptography communication.
Abstract:
Provided are an apparatus and method for generating an optical return-to-zero (RZ) signal using an electronic integrated circuit that generates an electric RZ signal. The apparatus for generating an optical RZ signal includes an electronic integrated circuit generating an electric return-to-zero (RZ) signal based on an input data signal and a clock signal, a driving amplifier amplifying the electric RZ signal, a light source outputting a carrier having a predetermined wavelength, and a modulator modulating the carrier according to the amplified RZ signal. The electronic integrated circuit can be constructed in a single electronic circuit chip, and thus the size of the optical transmission system can be reduced.
Abstract:
Provided are a method and apparatus for increasing transmission capacity for large-capacity high-speed signal transmission in an optical transport network (OTN). A method and apparatus for increasing transmission capacity are needed, which can transmit a large-capacity high-speed signal in order to transmit a signal through a united OTN by adapting signals from various tributary signal networks which have been independently operated for voice, image, or data transmission. Although various types of techniques such as Time Division Multiplexing (TDM), Wavelength Division Multiplexing (WDM), and an optical Printed Circuit Board (PCB) method have been performed, the techniques have various limitations. Therefore, a method and apparatus is provided for embodying a large-capacity optical transmission network, which overcome the limitations by using a Virtual Concatenation (VC) method.
Abstract:
An apparatus for cancellation of a transient voltage spike, includes: a first photodiode for detecting a photon in an optical signal input from an outside, a second photodiode for detecting the photon in the optical signal input from the outside, and a differential amplifier for canceling the same signal component in a first output signal of the first photodiode and a second output signal output from the second photodiode, and to amplify a voltage difference between the first output signal and the second output signal. The transient voltage spike cancellation apparatus cancel a transient voltage spike occurring in an avalanche photodiode operating in a gated Geiger mode, using the differential amplifier.
Abstract:
A multi-wavelength optical transmitting module includes a housing, an optical output block, an optical transmitting block, and an optical multiplexer (MUX) block. The optical output block is coupled to a first coupling hole of the housing and to an optical signal connector, and includes a first lens. The optical transmitting block is coupled to a second coupling hole of the housing and to an electrical signal connector. The optical transmitting block includes a plurality of transmitting devices which respectively output light having different wavelengths and are arranged parallel to the optical output block, and a plurality of second lenses which correspond respectively to the transmitting devices. The optical multiplexer (MUX) block multiplexes optical signals of multiple wavelengths, which were output from the transmitting devices and passed through the second lenses, and transmits the multiplexed optical signals to the optical output block.
Abstract:
There is provided an optical module having a top open can (TO-CAN) structure. The optical module having the TO-CAN structure includes a stem that accommodates an optical element or an electronic element therein, and a lead pin that is connected to the optical element or the electronic element through a hole of the stem, wherein the lead pin is bent in a “” shaped structure. Accordingly, the optical module with the TO-CAN structure may operate at high speed and be manufactured at low cost.
Abstract:
Disclosed is a structure for impedance matching by applying a CPW structure to an impedance discontinuous portion on a data signal line or using a micro-strip open stub so as to be used for high-speed transmission by a flexible PCB. According to the present invention, it is possible to fabricate a flexible PCB capable of performing low-priced and high-speed transmission.