Abstract:
An auto focusing method and apparatus for quantifying a focusing average value, comparing the focusing average value with an acceptance level of a preset focusing evaluation value, and iteratively focusing, while widening the depth of focus, when the focusing average value is lower than the acceptance level.
Abstract:
A self refresh circuit for an integrated circuit memory device includes a programmable refresh circuit, a plurality of counters, and a refresh cycle selection circuit. The programmable refresh circuit can be electrically programmed to generate one of a plurality of refresh control signals. A first one of the counters generates a first oscillating output signal having a first predetermined period and each successive counter generates a respective oscillating output signal having a respective period twice that of a respective preceding counter. The refresh cycle selection circuit selects a self refresh cycle from one of the oscillating output signals in response to the refresh control signal generated by the at least one programmable refresh circuit. Related methods are also disclosed.
Abstract:
A test control circuit and method of testing a memory cell in a semiconductor memory device. The test control circuit includes a memory cell array having a plurality of normal memory cells to store data on a semiconductor substrate and a plurality of redundancy memory cells to substitute for defective normal memory cells. Row and column redundancy fuse boxes include fuse elements to be electrically fused to enable row and column redundancy decoders for selecting rows and columns of the redundancy memory cells. A redundancy cell test signal generator generates, in response to a test signal applied to an extra line in the address bus, a master clock for testing the redundancy memory cell under the same mode as a test mode of the normal memory cell. A test controller provides an enable signal for selecting the redundancy memory cells of a memory array in response to logic levels of the master clock and an address signal applied during the redundancy memory cell test.
Abstract:
An electronic device may include first and second semiconductor chips. The first semiconductor chip may include a processor and a first memory. The second semiconductor chip may include a second memory. The first memory and second memory may be configured to exchange first data and second data with the processor, respectively. The processor may be configured to exchange target data processed or to be processed with the first and second memories. The processor may be configured to determine the target data as the first data if the number of accesses of the target data is equal to or greater than a first reference value. The processor may be configured to determine the target data as the second data if the number of accesses of the target data is less than the first reference value.
Abstract:
Example embodiments relate to an apparatus and method for inspecting a substrate defect. The substrate defect inspecting apparatus includes a substrate, a light source emitting an infrared beam to the substrate, a detector detecting the infrared beam reflected from the substrate, and a defect analyzer receiving first information and second information from the detector and analyzing defects existing in the substrate. According to at least one example embodiment, the second information is acquired during a later process than the first information.
Abstract:
A block studying tool for an infant, includes: a block body having a hexahedral shape, a lower portion of which is opened; and a plurality of unit assembling portions disposed to protrude from an upper portion of the block body upward and disposed to be spaced a predetermined distance apart from each other, wherein a divider is disposed at an inside of the lower portion of the block body and forms an assembling space in which the plurality of unit assembling portions of the adjacent block body are to be assembled according to positions.
Abstract:
Microelectronic substrate inspection equipment includes a gas container which contains helium gas, a helium ion generator which is disposed in the gas container and converts the helium gas into helium ions and a wafer stage which is disposed under the gas container and on which a substrate to be inspected is placed. The equipment further includes a secondary electron detector which is disposed above the wafer stage and detects electrons generated from the substrate, a compressor which receives first gaseous nitrogen from a continuous nitrogen supply device and compresses the received first gaseous nitrogen into liquid nitrogen, a liquid nitrogen dewar which is connected to the compressor and stores the liquid nitrogen, and a cooling device that is coupled to the helium ion generator. The cooling device is disposed on the gas container, and cools the helium ion generator by vaporizing the liquid nitrogen. Related methods are also disclosed.
Abstract:
Disclosed herein is a stable liquid formulation comprising human growth hormone; L-lysine, L-arginine or polyethylene glycol 300; and poly(oxyethylene) poly(oxypropylene) copolymer, polyethylene glycol-15 polyoxystearate or polyethylene glycol-35 castor oil.
Abstract:
In a method of generating a three-dimensional process window qualification, a photoresist layer is coated on a substrate including an underlying structure. A plurality of circular-shaped regions of the substrate are distinguished into 1 to n regions to partition the substrate into a center portion and an edge portion, n being a natural number greater than 2. 1 to n exposing ranges are set, including a common exposing condition for the 1 to n regions. A photoresist pattern is fox led by exposing each shot portion in the 1 to n regions using a split exposing condition in the 1 to n exposing ranges. The photoresist pattern is detected, and a normal photoresist pattern with respect to each of the 1 to n regions is selected to generate the three-dimensional process window qualification.
Abstract:
The present invention relates to a nanoliposome comprising a liposome membrane containing esterified lecithin, and one or more physiologically active ingredients included in inner space of the liposome membrane; a method for preparing the same; and a composition for preventing or treating skin diseases, comprising the same. The nanoliposome according to the present invention has long-term stability and uniformity, and so can be used to prepare a composition for skin having excellent moisturizing and penetrating properties, such as cosmetics, medicament for treating skin diseases, or the like. In particular, the present composition for preventing or treating skin diseases comprises epidermal growth factor included in the nanoliposome, thereby showing an excellent effect of stimulating skin-penetration and good pharmaceutical stability. Also, the esterified lecithin used in preparing liposome can provide effects of softening skin and stimulating skin-penetration, thereby enhancing the penetration of epidermal growth factor and natural extract into skin, as well as additional moisturizing effect which is advantageous in treating skin diseases. Further, since the present composition comprises nanoliposome prepared by containing esterified lecithin in liposome membrane, the conventional problems of heating and dispersing active ingredients at high temperature (70° C. or more), low stability and uniformity, or the like can be solved.